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ABSTRACT 

 
The rise of organometal halide perovskite materials with extremely intriguing properties 

have opened a new horizon in the design of high speed and low price optoelectronic devices. The 

bandgap in the crystalline structure of these materials can be easily tuned for various applications 

and their dominant non-excitonic dynamics eliminate the requirement of a bulk or 

heterostructure for charge carrier separation. These unique properties increase the photo-

sensitivity of perovskite-based optoelectronics and provide them with a low time constant, 

resulting in high precision fast devices. Realization of perovskite-based devices translates directly 

to inexpensive and simplified architectures of optoelectronic systems. 

In perovskite-based devices, costly silicon or wide bandgap semiconductor fabrication 

technology is largely replaced by solution processable methods. Their bandgap tunability allows 

the reduction of the required optical accessories and interconnects in optoelectronic 

components. For instance, a tuned perovskite-based detector can substitute a narrowband 

detecting system consisting of a conventional detector and its required optical accessories such 

as lenses and color filters. These properties of perovskite-based devices lead to the realization of 

inexpensive, low power and high-performance optoelectronic systems. In this work, the design 

of a narrowband, low noise, high performance and stable photodetector based on organic-

inorganic hybrid perovskite structure is proposed. The full width at half maximum (FWHM) of the 

device would be in the nanometer range. The response of the device can be tuned using either 
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different ratios of the lead salts or synthetic dyes (macromolecules) in the crystalline structure 

for color discrimination in machine vision and imaging applications.  

Non-excitonic photocarrier generation, tunability of the optical bandgap and low voltage 

requirements for charge carrier generation are the keys to the utility of this optoelectronic 

device. The goals of this project were to identify the required functional materials (lead salts and 

synthetic dyes based on their molecular structures) and optimize their performance; the study 

of their effect on the charge collection narrowing mechanism and bandwidth specifications 

defined for detectivity, linear dynamic range (LDR) and photoresponse speed. To achieve these 

goals, it was proposed to study the light detection properties as well as spectroscopic and 

semiconductor parameter characteristics of fabricated devices. The design considerations of such 

devices are versatile and may be modulated for different applications. 
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CHAPTER 1 : INTRODUCTION 

 
The global market value of optoelectronic components is expected to exceed USD 55 

billion by 2020 at CAGR of 18.83%, faster than any other existing industry. This forecast is merely 

attributed to the optoelectronics based on conventional semiconductors known for their low Fill 

Factor (FF) and high manufacturing costs. The market drive for these components is the emerging 

applications of the optoelectronics in the medical arena, machine vision, and artificial 

intelligence. Limited carbon-based natural resources and global warming considerations are 

other driving forces behind the increasing capital investment in optoelectronic components with 

energy generating capability[1]. Therefore, advancing the optoelectronics technology and 

achieving their theoretical limits are highly desired.  

Application specific synthesis of new materials and facile manufacturing methods seem 

to be the key to eliminating the limiting factors in the manufacturing expenses of the 

optoelectronics and reaching their maximum theoretical efficiency[2]. Recently, a well-known 

material framework called perovskite has gained significant ground on its photosensitive 

compounds for optoelectronic applications[3]. This framework offers application-specific 

properties in optoelectronic components to source, detect and control light. 

Photosensitive perovskite materials display remarkably high photoluminescence 

quantum efficiencies and have proven to be solid competitors of silicon-based ones[4]. The 

power conversion efficiency (PCE) in perovskite-based solar cells (PSCs) have skyrocketed from 
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3% to 22% in less than five years[5]. The solution processable nature of the thin film perovskites 

as well as other inexpensive deposition methods utilized in their processing justify the economic 

drive for their commercialization[6, 7]. Similar to every new technology, perovskite-based 

components require further modification to find their way to the market; in particular, their 

instability and toxicity must be addressed[8]. 

1.1. Prospect 

In this dissertation, design, fabrication, and characterization of application-specific image 

sensors with greater color constancy and lower cost have been presented. Image sensors are one 

of the most prominent members of the optoelectronics family that detect and transfer the 

necessary information required to constitute an image. The current technology of the image 

sensors is based on the operational principles of Charged Coupled Devices (CCD)s and 

Complementary Metal Oxide Semiconductors (CMOS)s. The advent of photosensitive perovskites 

widens the horizon and further the advancement in image sensors provided their instability is 

properly addressed. A part of this dissertation is dedicated to root cause analysis of instability in 

these structures and elimination of the cause.  

Perovskite-based image sensors offer bandwidth tunability over the visible spectrum 

which translates directly to light detection independent of varying background illumination. This 

concept has been exercised in the second part of this document. The effect of various dopants, 

organic compounds and synthetic molecules on the performance of these devices have been 

scrutinized. The unique properties of these electronic materials also eliminate the requirements 

for optical components such as filters and lenses. In this dissertation, the integration of these 

functional materials and conventional structures is studied. This document is concluded based 
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on a recipe for fabrication of filterless, narrowband perovskite-based image sensors with greater 

color constancy and lower cost using a chloride salt. 

1.2. Motivation 

The future market statistics in the field of optoelectronics and the changing landscape of 

their applications leave no doubt on the essential of further research and development in this 

industry. Undeniably, the conventional electronic materials such as silicon have transformed the 

technology and raised the standards of living. However, their intrinsic characteristics introduce 

compatibility issues related to the future market demands. Advanced functional materials are 

required to drive the highly flexible additive manufacturing techniques that fit into the 

requirements of the modern optoelectronics industry. 

Perovskite framework with the generic formula of ABX3 , shown in Figure 1.1, has been 

proven to offer the highest power conversion efficiency and flexibility as well as the lowest cost 

among other advanced materials[9]. This is derived from the fact that various elements can 

participate in forming the structure, a principal factor for light absorption. Different elements 

possess different absorption spectra. Hence, the absorption spectrum of the perovskite changes 

based on its constituent materials. This property can potentially feature reconfigurable and 

tunable optoelectronic components.  

The perovskite crystalline structure is formed using low cost deposition techniques such 

as solution processing, easily adopted in additive manufacturing. The presence of perovskites 

eliminates the requirement of optical accessories in the architecture of the device. This also helps 

with further cost reduction justifying the fast pace towards commercialization of this new 

technology. 
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Figure 1.1. Perovskite framework filled with photosensitive compounds.  Shown are 
methylammonium(A), lead (B) and iodide (X). 

1.3. Methods 

The superior light absorbing characteristics of organo-metal trihalide perovskites qualifies 

their application in optoelectronic transducer such as light emitting diodes, photodetectors and 

image sensors[3]. Once steady and stable, the tunable bandwidth of the perovskites offers 

unique photo-detecting properties; high color discrimination and constancy with no requirement 

for optical components such as filters or lenses.  

To design and fabricate application specific perovskite-based image sensors, an electron 

hole separation mechanism must be implemented. A layered structure consisting of organo-

metal halide perovskites sandwiched between electron and hole transporting layers constitute 

the basic structure of the device. The absorption bandwidth of the perovskites can be adjusted 

by changing the ratios of the halides in the perovskite compounds and administering various 

concentrations of micro-molecules. The principles of the bandwidth tunability is shown in Figure 

1.2. 
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Figure 1.2. (a) Selective light detection technique using various ratios of halides for the lower limit 
(λonset1) and synthetic micro-molecules for the upper limit (λonset2). (b) A schematic of 
wavelength variation as a function of halide ratios. 

1.4. Challenges 

The recent certified PCE of 22.7% and the feasibility of PCEs around 30% through tandem 

structures with silicon or copper indium gallium selenide-based bottom cell and PSC top cell, 

necessitates further scrutiny to eliminate the toxicity and instability of the perovskites[8, 10-13]. 

The toxicity of perovskite is due to its lead atom well known as an environmentally hazardous 

heavy metal. However, it could not be considered as the main impediment in the 

commercialization of PSCs as seen in similar cases such as cadmium telluride (CdTe)[14]. CdTe 

thin film solar cells with PCE of above 22%  occupy the largest portion of thin film photovoltaics 

in the market despite their carcinogenic nature[15]. In addition, well established lead recycling 

procedures have been developed for battery productions and would be applicable for the case 

of PSCs[16].  

Regardless of the economic justification or available recycling techniques, the lead 

content in photovoltaics must be reduced. This would be possible using novel materials in the 

architecture of the optoelectronic components. For example, employing materials such as 

polymers with extensively large surface area allows application of an extremely thin layer of 
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perovskite material producing the same device performance as if a considerable amount of these 

crystalline structures is utilized[17]. The remaining issue on these emerging materials is their 

stability[18].  

In this dissertation, the basic structure of electronic devices that source, detect and 

control the light were discussed. The design considerations in the conventional architecture of 

these devices versus those of the new class of optoelectronics were studied. Finally, the results 

of the projected research on perovskite-based optoelectronics were presented. Challenges and 

possible solutions were demonstrated. Recipes were developed on the fabrication of colored 

pixels for narrowband absorption.  
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CHAPTER 2 : LITERATURE REVIEW 

 

This chapter provides an overview of the historical background of the imaging technology. 

It also includes a detailed discussion on the theoretical and practical aspects of image sensing 

technology from the invention of CCDs to Organic Light Emitting Diodes (OLED)s with the 

emphasis on the materials, photoactive perovskites, in the device architectures. The figures of 

merit of photodetectors/pixels are introduced and the optimization methods are described. The 

current challenges in the development process of the image sensors based on the perovskites, 

the possible resolutions and the possibilities to integrate this new generation of materials with 

conventional structures are discussed. 

2.1.  Background 

Imaging or capturing visual representations of objects and living creatures is a technique 

based on transduction of optical energy to electrical energy. The photons emitted from the 

objects carry information regarding the color of the object in the form of energy; as the energy 

of each photon corresponds to a certain wavelength in the visible spectrum. The first practical 

color image sensor was invented in 1839 by Louis Daguerre. The technique involved unilateral 

chemical reactions on photosensitive materials[19]. The invention was superseded shortly after 

and evolved from silver-plated copper sheets polished to mirror finish, coated with 

photosensitive materials to roll films in 1881[20]. In less than a century, the semiconductor 
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industry offered an entirely new venue to the image sensing by the invention of Charged Coupled 

Devices (CCD)s[21].  

Although the architecture of Complementary Metal-Oxide Semiconductors (CMOS)s was 

known before the invention of CCDs, their unstable threshold voltage delayed their imaging 

application[22]. CMOS image sensors were first developed in NASA jet propulsion labs by Eric 

Fossum in early 1990s[23]. The low power consumption of CMOS imagers as well as their 

inexpensive manufacture have overshadowed the higher light sensitivity and linear dynamic 

range of the CCDs[24]. As a result, digital image acquisition has been established mostly on the 

basis of CMOS technology[25]. In less than 20 years, CMOS image sensors have found their way 

to scientific, medical, entertainment and automotive applications as well as daily life. Their 

ubiquitous presence in the modern era has taken a new turn for the emerging applications such 

as machine vision, intelligent transport systems (ITS) or flexible medical imaging[26]. 

The progress in image processing and pattern recognition techniques relies on the 

advancement of the imaging technologies. Smart imagers with higher signal to noise ratios, 

greater linear dynamic range, more analog to digital functions, lower power consumption, higher 

fill factor, and interaction capability with a variety of interfaces are required. In addition, the 

processed images based on the current technology have always been a subject of color change 

depending on the brightness in the environment. This so-called “color constancy” challenge must 

be resolved for accuracy and precise detection applications.  

The working principle of an image pixel is as follows: first, the photodiode must be 

reversed biased to a high voltage; second, a voltage drop occurs across the diode upon the 

exposure of the photosensitive materials to the photons; third, at the end of the exposure, the 
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remaining voltage across the diode is measured- the voltage difference is an indication of the 

number of photons impinging the photoactive area; fourth, the photodiode is reset for a new 

cycle[24]. The voltage change causes the accumulation of the charge carriers in a two-

dimensional array that must be read-out. The detected charge carriers are then converted to 

digital data. An Application Specific Integrated Circuit (ASIC) processes the digital data to form 

the final image[27]. The read-out mechanism varies in different imaging systems. For example, 

CCDs require several clocking steps to be read-out whereas, in CMOS imagers, each pixel is read-

out individually. Charge Injection Devices (CIDs) are read-out based on the concept of 

displacement current and in image pickup tubes the resulting current of scanning the cathode 

ray on the objects defines the final image or video[28].  

Imaging requirements of each application results in changes in pixel sensing arrangement 

(passive or active), the architecture of the image sensor, integration of smart functions onto the 

image sensor chips,  color-separation mechanisms and systems, selection of the photosensitive 

materials and image processing software[27, 29, 30]. Among all the forenamed considerations, 

the photosensitive materials play the most dominant role in determining the spectral response 

of the devices, their sensitivity, dynamic range, color accuracy and resolution. In addition, the 

physical properties of the image sensors such as flexibility and weight stem from the mechanical 

properties of their constructing photosensitive materials.  

Image sensors may be classified as broadband (panchromatic) or narrowband 

(monochromatic) based on the absorption characteristics of their constructing photosensitive 

materials and their operating color separation mechanisms. 
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Inorganic semiconductors such as silicon (hydrogenated amorphous as well as crystalline) 

possess relatively high dielectric constants resulting in low exciton binding energies which make 

them suitable candidates for light absorption purposes of color imaging. Some of the prominent 

features of these inorganic semiconductors might be unfavorable for imaging purposes. For 

example, long carrier lifetime in silicon might cause crosstalk between the pixels. The materials 

by themselves are considered broadband and would require optical accessories to meet the 

specifications in color imaging. Silicon-based imagers are prone to undesired infrared (IR) 

sensitivity which necessitates the presence of IR filters. Also, these inorganic materials would 

never fulfill the requirements of flexible additive manufacturing on the horizon. The resolution 

to these challenges seems to be intertwined with the development of organic-based color 

imaging which offers a new set of possibilities for future advancements in medical and 

technological arenas. 

2.2.  Color Discrimination Techniques 

There have been two major approaches for color imaging based on conventional 

semiconductors such as silicon or gallium arsenide. The first approach is developed based on the 

utilization of auxiliary structures such as filter arrays or lenses to detect photon with a specific 

wavelength. The second approach relies on the capability of the photoactive materials employed 

in the structure of the sensors to discriminate different colors. A detailed review on each 

approach is provided in the following sections: 

2.2.1.  Color Discrimination Based on the Auxiliary Structures  

This approach results in broadband color imaging using conventional semiconductors and 

includes several different configurations. 
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2.2.1.1.  Utilization of Bayer Filter Mosaic 

In this configuration, a color filter array (CFA) is positioned on each sensor cell. There are 

twice as many Greens (G)s in Bayer’s structure as Blues (B)s and Reds (R)s to emulate a biological 

human eye. In this configuration, the incident light is filtered onto the individual pixels of the 

imaging array. Consequently, two-thirds of the light are absorbed by the CFA resulting in lower 

quantum efficiency and spatial resolution in each pixel. Also, the space occupied by the CFAs 

limits the miniaturization scales. The final image must undergo an extra step of de-mosaicing 

which makes it prone to lower color constancy and quality. This configuration is mainly used in 

digital cameras shown in Figure 2.1(a). 

2.2.1.2.  Color Wheel 

The auxiliary structure in this configuration is a color wheel that produces three 

consecutive images as it rotates 360 degrees. The final image is constructed based on the 

combination of these three images. This configuration is a subject of image distortion due to its 

low clock rate, shown in Figure 2.1(b).  

2.2.1.3.  Beam Splitter 

In this configuration, a beam splitter diffracts the light to its three main colors and deploys 

each beam separately to its corresponding pixel. This method requires three separate pixels for 

sensing and called a three-chip system. This requirement puts a constraint on the miniaturization 

of this configuration, shown in Figure 2.1(c). 
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2.2.1.4.  Integrated Metal Strips 

Integration of 1D or 2D array of metal strips within each imaging cell called integrated 

color pixel (ICP) that results in simultaneous color separation and image capture. This 

configuration results in the least image distortion and highest resolution, shown in Figure 2.1(d). 

 
Figure 2.1. Color discrimination methods based on the auxiliary structures.  Copyright permission 
is provided in the appendix[31] 

There are several other developing technologies to overcome the low light transmission 

and lift the miniaturization constraint introduced due to the presence of the auxiliary structures. 

Diffractive filter arrays and plasmonic hole arrays are two of the many to improve the light 

absorption without manipulating the photosensitive materials. All these techniques add extra 

steps to the manufacturing process and increase the cost of the final product. 

2.2.2.  Color Discrimination Based on the Photosensitive Materials 

This approach is based on the electromagnetic nature of light and its penetration depth. 

This approach has been practiced on two different configurations. 
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2.2.2.1.  Stacking Color Pixels 

The three-layer arrangement of color filters stacked on every single pixel allows the pixel 

to absorb all the three colors based on their penetration depth in the substrate and construct the 

final image. Although this method improves the fill factor, the cross talk between the layers still 

poses a real challenge in the development of this method, shown in Figure 2.2(a). 

2.2.2.2.  Transverse Field Effect 

This approach relies on the manipulation of the electric field across the device and charge 

carrier generation in different depths within the substrate, shown in Figure 2.2(b).  

 
Figure 2.2. Color discrimination methods based on the photosensitive materials.  Copyright 
permission is provided in the appendix[31] 

There have been several attempts to replace the semiconducting bulks with 

nanostructures and quantum dots. The second approach has been the center of focus in research 

and development of high efficiency, filterless image sensors.  

2.3. Color Constancy in Color Imaging 

The term “color constancy” refers to a feature of the human color perception system. It 

is expected that the perceived color of an object must remain constant by an observer under 

varying illumination conditions. The current color imaging systems fail to capture color images 

that are independent of the characteristics of the illuminant. This problem is attributed to the 
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wideband absorption spectrum of the imagers. Most of the light is absorbed from the 

environment regardless of its origin, it may come from the object or its ambient. This light then 

contributes to the construction of the final image. The use of color filters also reduces the 

accuracy of color imaging as it confines the distribution of the color spectrum to only three main 

colors. The attempts to overcome this problem are acknowledgments of the shortcomings of the 

current technology.  

2.4. Perovskites, Resolution to Color Constancy  

The current technology based on the conventional semiconductors at its highest practical 

efficiency still experiences difficulties to maintain the pace with the demands of the future 

market[32]. Portability, flexibility, higher efficiency, lower cost and smaller size with smart 

functions are the required features for future optoelectronic components. These features can 

only be realized using perovskite semiconductor pigments[33]. As a framework, perovskite 

structures offer a variety of lattice phases and their facile formation techniques such as solution 

processing simplify their doping methods and bandwidth tunability[34]. In less than a decade 

from their emergence, perovskite-based photovoltaic cells have established the highest growth 

rate amongst others as shown in Figure 2.3. 

The generic formula of the perovskite materials is ABX3, with A as the organic, B as the 

lead and X as the halide site in organolead trihalide photoactive perovskites. The X site of such 

perovskites may contain various ratios of halides as long as they follow Vegard’s empirical 

law[35]. The variations in the ratios of the halides slide their absorption spectrum along the 

visible range, e.g. for I1−xBrx the wavelength varies from 800nm to 400nm as x varies from 0 to 

1[36]. The A site contains organic molecules such as methylammonium (MA) or formamidinium 
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(FA) cations. The A site can be easily doped with cesium ions to enhance the carrier 

transportation characteristics of the component[36]. 

 
Figure 2.3. Best research cell efficiencies certified by National Renewable Energy laboratory.  
Copyright permission is provided in the appendix 

2.5. Characterization of Image Sensors 

Image sensors are members of optoelectronics family. Therefore, they share the same 

characterization methods with photodiodes (including solar cells), integrated optical circuit 

elements, photomultipliers etc. However, the figures of merit might be slightly different from 

one component to another. For example, open circuit voltage, short circuit current and fill factor 

in solar cells are the defining parameters as to whether the solar cell operates efficiently, and 

both its exterior and interior features are optimized or not. By contrast, dark current density and 

external quantum efficiency (EQE) is considered as the most important figures of merit for the 

image sensors. In this section, important parameters of the optoelectronic components used 

throughout this project and their measurement methods are described.  
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2.5.1.  Short Circuit Current and Open Circuit Voltage 

Short circuit current (ISC) is the highest current level (short circuit condition) in an 

electrical system. Open circuit voltage (VOC) is the voltage measured across the device (two 

terminal) when the device is disconnected. These two parameters are the focus of source 

optoelectronic components such as solar cells. An equivalent circuit model for a solar cell is 

shown in Figure 2.4(a). The ideal I-V characteristics of source optoelectronic components is given 

by 

I = IS (e
qV

KT⁄ − 1) IL                                                                 (1)                  

and  

JS =
IS

A
= qNCNV (

1

NA
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) e

Eg
KT

⁄                      (2) 

where IS is the diode saturation current, IL is the source current built up due to the excitation of 

the excess charge carriers upon illumination, RL is the load resistance (shown in Figure 2.4), A is 

the diode surface area, NC is the effective density of states in the conduction band, NV is the 

effective density of states in the valence band, Dn and Dp are the diffusivity for electron and hole 

respectively, τn  and τp are the carrier lifetime for electrons and holes. Eg is the bandgap energy 

and K is the Boltzmann constant, T is the temperature and V is the voltage across the load. The 

current passing through the load equals I = −V
R⁄ . The current-voltage characteristics of a solar 

cell is shown in Figure 2.4(b). The point in which the produced current by the solar cell, equation 

(1), equals the load current with the same voltage is called the operating point. Adjusting the 

load value results in proper extraction of the power and higher efficiency solar cells. The blue 
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shaded rectangle shows the maximum power produced by the solar cell, P = Im × Vm, that can 

be produced by the diode. 

 
Figure 2.4. (a) Equivalent circuit model for a source optoelectronic component. (b) I-V 
characteristics of a light absorbing diode (solar cell) 

2.5.2. Fill Factor 

In imagers, the fill factor may be considered as the ratio of the active surface area to the 

total image pixel surface area of an image sensor.  In solar cells fill factor is defined as the 

maximum power produced divided by the product of VOC and ISC[24, 37, 38]. In Figure 2.4(b), the 

ratio of the blue shaded area to the gray shaded area is defined as the fill factor and can be 

extracted from the I-V characteristics of a device.  

2.5.3. Quantum Efficiency  

In optoelectronics, quantum efficiency is defined as the rate of the incident photons to 

current efficiency (IPCE) or the conversion efficiency of photons to electrons. It may be 

considered as the percentage of the number of photons that produce charge carriers. Since each 

photon has a unique wavelength, quantum efficiency is a measure of the photoresponsivity of a 

device over a range of wavelengths. External Quantum Efficiency (EQE) is expressed as the ratio 

of the number of generated electrons to the number of incident photons, whereas Internal 
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Quantum Efficiency (IQE) is the ratio of the number of generated electrons to the absorbed 

photons.  

EQE =
electrons sec⁄

photons sec⁄
=

current (charge of one electron)⁄

(total power of photons) (energy of one photon)⁄
                   (3) 

IQE =
electrons sec⁄

absorbed photons sec⁄
=

EQE

1 − Reflection
                                                                      (4) 

2.5.4. Responsivity 

Responsivity refers to the gain of an optoelectronic component. It is expressed as the 

ratio of the output current to the input light power in units of Amperes/Watt (A/W). Responsivity 

is an indicator of EQE considering the energy of each photon per charge of an electron. 

𝑅 =
𝐽𝑝ℎ

𝐿𝑖𝑛
=

𝐸𝑄𝐸 × 𝑒

ℎ𝜈
                                                                                                     (5) 

where 𝐽𝑝ℎ is the photocurrent density, 𝐿𝑖𝑛 is the irradiance of the incident light,  𝑒  is the electron 

charge, ℎ is the Planck’s constant and 𝜈 is the frequency of the incident photon.   

2.5.5. Spectral Response (FWHM and 𝝀𝒎𝒂𝒙) 

The absorption profile of an optoelectronic component over various regions of 

electromagnetic spectrum is a chief factor in determining their power conversion efficiency. The 

absorption of the photoactive layer in each component defines its application as a broadband or 

narrowband absorber. A Gaussian spectral response is expected from broadband silicon-based 

photodetectors. Due to their poor color discrimination, silicon-based photodetectors 

underperform in image sensing applications. A semi-Gaussian spectral response is preferred for 

imaging purposes as it sets the upper and lower limits closer to the maximum wavelength (𝜆𝑚𝑎𝑥). 
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Full width at Half Maximum (FWHM) for such applications should not exceed 200nm[39]. Such 

absorption profile results in precision color discrimination with minimum illuminant dependency. 

2.5.6. Cross Talk Between Image Pixels 

One of the main issues associated with the current technology of CCD and CMOS is the 

application of silicon in the structure of the pixels as photoactive materials and in the readout 

elements for microelectronic circuits as it puts a constraint on the size of the pixels [40]. The size 

of a pixel may vary from 10 microns to 1 micron[40]. The lower limit is determined based on an 

observation known as “Cross Talk”. When the sizes of the image pixels are less than a micron, an 

undesired signal transfer occurs between the pixels. The root cause might be electrical as the 

effect of the leakage current in a pixel on its neighboring pixels, or optical due to light scattering 

and deflection[41, 42]. To reduce the cross talk, silicon may only be used for its electronics 

functions.  

2.5.7. Dark and Noise Current 

The current present in an optoelectronic component in the absence of illumination is 

called dark current. Dark current depends on the trap states, doping density, work function of 

the electrodes and charge carrier mobilities[43]. Each signal contains the dark current as well as 

the photocurrent. It is not practical to calculate the photocurrent accurately due to the random 

occurrence of shot noise and thermal fluctuations. Also, the frequency dependence of the noise 

level must be taken into consideration. As a result, the Noise current is defined to account these 

random fluctuations at a detection bandwidth of B: 

inoise = [ishot
2 + ithermal

2 + i1
f⁄

2 + iGR

2 ]
1

2⁄ = [2eidB +
4kTB
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2 ]
1

2⁄     (6) 
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where k is the Boltzmann constant, T is the temperature in Kelvin, Rshis the shunt resistance. The 

first two terms are independent of frequency and the third and fourth terms comprise the 

frequency dependence nature of noise.  

2.5.8. Noise Equivalent Power (NEP) and Specific Detectivity (D) 

The noise equivalent power is the measure of the sensitivity of an image pixel/photodiode 

when the signal to noise ratio is one over a bandwidth of one hertz with the unit of (W
√Hz

⁄  ) or 

(V
√Hz

⁄ ). The noise equivalent power can be calculated as follows: 

NEP =
inoise

R√B
                                                                                                                                      (7) 

The detectivity is defined as the reciprocal function of NEP and can be normalized to the square 

root of the surface are, A: 

D∗ =
√A

NEP
=

R√AB

inoise
⟶  D∗ =

eλ√AB. EQE

hcinoise
                                                                               (8) 

specific detectivity is measured in units of 𝐻𝑧
1

2⁄ 𝑊−1, common units known as Jones (J). 

2.5.9. Dynamic Range 

In optoelectronics, dynamic range refers to the ratio of the maximum to the minimum of 

an acquired quantity. In image sensors, the acquired quantity is the current. The minimum 

current level is the noise current. Since a linear response of an image sensor is required for 

imaging purposes, the concept of Linear Dynamic Range (LDR) is frequently used in this field. The 

response of an image sensor deviates from its linear format mainly due to the extension of space 

charges when the charge carrier concentration increases, resulting in a lower lifetime for the 

charge carriers with respect to their transit time[44]. Although the theoretical limit for the 
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minimum current is the measured noise level, it is known that the device response might become 

non-linear in lower light intensities as well[45]. The LDR is calculated using the following formula: 

LDR = 20(10) log
Imin

Imax
                                                                                                                (9) 

2.5.10. Speed of Response 

In optoelectronics, the speed of response is considered as the time required for both 

generation and extraction of the charge carriers. In imaging applications, the speed of response 

might be high to enable capturing a wide range of varying levels of illumination in the 

environment. The operational bandwidth is defined as the frequency of the modulated input light 

at which the photoresponse in -3dB lower than continuous wave (CW) response. This bandwidth 

relies on the carrier transit time as well as the time constant of the device and is defined as 

follows 

1

f−3dB
2 =

1

f1
2 +

1

fRC
2                                                                                                                      (10) 

where ft =
1

2πttransit
 and fRC =

1

2πRC
 

2.6. Photosensitive Perovskite Thin Films 

Perovskite structures may be processed using methods listed below. 

2.6.1.  One Step Deposition 

In this technique, the organic and inorganic salts are mixed in a solvent. The solution is 

deposited on the substrate using spin coating or dipping methods, shown in Figure 2.5(a)[46]. 
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2.6.2.  Sequential Deposition 

The mixture of organic and inorganic salts in one solution reduces control over the 

morphology of the perovskite films. Hence, the reproducibility of the film becomes a subject of 

question. The sequential deposition technique is a two-step method in which the inorganic salt 

is first deposited and cured on the hotplate. The second step includes bringing the deposited film 

into contact with the organic salt dissolved in a solvent. This second step results in the nucleation 

of the perovskites and formation of thin films with higher reproducibility. However, one might 

consider the grain sizes in one step deposition more favorable, shown in Figure 2.5(b)[47, 48].  

2.6.3.  Solvent Engineering 

Solution processable nature of the perovskite structures has boosted their popularity due 

to its cost-effectiveness and easy handling. In solvent engineering, the main solvent (e.g. 

dimethylformamide (DMF) or gamma- Butyrolactone(GBL)) is mixed with a solvent that has lower 

evaporation rate (e.g. dimethyl sulfoxide (DMSO)). This mixture retards the evaporation process 

to certain extend and gives the dissolved atoms enough time to position themselves properly in 

the perovskite framework while the materials are spun. Application (dripping) of a solvent such 

as toluene or chloroform that does not dissolve perovskite structures but is miscible with DMF, 

GBL and DMSO results in rapid intercalation of the solvent molecules inside the structure. 

Consequently, the interlayer expansion along the c axis occurs that results in more uniform 

structures and higher efficiencies[49].   

2.6.4.  Vapor-Assisted Deposition 

In this method, the inorganic precursor spin-coated on the substrate is annealed in the 

vapor of the second precursor (organic) under N2 flow to form the perovskite structure[50]. 
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2.6.5.  Additive-Assisted Deposition 

In this deposition technique, a compatible chloride salt such as PbCl2 is dissolved in 1,8-

diiodooctane (DIO) and administered to provide homogenous nucleation and enhance the 

reproducibility of the film morphology[51]. 

2.6.6.  Vacuum Evaporation 

This process involves evaporation of organic and inorganic salt constituents of the 

perovskite structures under vacuum. Vacuum evaporation of the photoactive layers results in 

higher efficiency optoelectronic components, shown in Figure 2.5(c)[52]. 

 
Figure 2.5. Perovskite thin films deposited using (a) one step deposition. (b) sequential 
deposition, reproduced from [48]under (CC BY 4.0) , figure provided under creative commons, 
(c) vacuum evaporation, copyright permission is provided in the appendix[52] 

2.7.  Charge Transport in Perovskite-Based Imagers 

The photosensitive perovskite compound possesses dual ionic and electronic charge 

carriers[53, 54]. The presence of the ions is associated with the vacancy drift in the absorbing 

layers that influence the band structures under different biasing conditions, shown in Figure 2.6. 

This feature sets these photosensitive perovskites apart from other direct bandgap inorganic 

semiconductors. The charge transport mechanism of the perovskites cannot be modeled using 
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the well-known 1D drift-diffusion process. In fact, the study of the charge carrier transport 

properties of the photosensitive perovskite compounds is extremely difficult due to the 

variations in the fabrication process and crystalline structures. The charge transport properties 

alter depending on the degree of crystallinity and crystal orientation of the perovskite[55, 56]. 

For example, the diffusion length of the charge carriers in single crystalline structures is three 

orders of magnitude greater in single crystalline structures compared to the polycrystalline 

ones[57].  

 
Figure 2.6. The ionic transport causes vacancy drift in the perovskite-based p-i-n device 
configuration which changes the band structure under different biasing conditions. (a) Ec is the 
conduction band, Ev is the valence band, the iodide vacancies are shown as squares carrying 
positive charges and Vbi is the built-in voltage. (b)Schematic of energy level variations during 
chronophotoamperometry measurements. The variations in the band structures stem from the 
redistribution of the iodide vacancies and interface changes under different biasing conditions, 
reproduced from[58] under (CC BY 4.0)  . 

In the energy conversion process, an absorbed photon stimulates an exciton (bound 

electron and its hole). Various binding energies result in different dielectric constants in the 

perovskites. For instance, the static dielectric constant for a single crystalline methylammonium 
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lead triiodide is  𝜀0 = 25.7 where its high frequency dielectric constant is 𝜀∞ = 5.6[59]. These 

values with a small tolerance are repeatable in other types of the perovskites indicating the 

presence of an extremely weak screening of Coulomb force in the electron-hole pair. This fact 

demonstrates the high possibility of charge carrier generation and extraction in these 

compounds. However, the presence of the trap states reduces the mobility and diffusion length 

values in these structures resulting in lower values of external quantum efficiency. The effect of 

deep or shallow defects may not be overlooked in modeling the charge carrier related 

parameters[60]. A schematic of the photophysical processes after photoexcitation and the loss 

mechanism in the perovskite structure is shown in Figure 2.7. 

 
Figure 2.7. Photoexcitation results in the creation of an exciton. Due to the high dielectric 
constant of the perovskites, the exciton dissociates easily for charge carrier collection. The 
possibility of charge carrier recombination is shown in black (strong possibility) and gray (weak 
possibility) are shown in the schematic. Monomolecular recombination is independent of charge 
carrier density whereas bimolecular and Auger recombination depend on the charge carrier 
density. The latter surfaces under high-intensity photoexcitation. Typically, under high intensity, 
Auger recombination is overshadowed by spontaneous emission, reproduced from [61] under 
(CC BY 3.0.) 



www.manaraa.com

26 
 

There have been several first principle studies on mobility measurements and minority 

carrier lifetimes. Also, experimental methods such as electrical transient technique (e.g. time of 

flight, CELIV), steady state technique (e.g. Hall effect and space charge limited current), time-

resolved laser spectroscopy (e.g. time-resolved photoluminescence, transient absorption) have 

been utilized to measure the charge carrier mobilities and diffusion lengths[62]. In this regard, 

different measurement techniques result in different values of the inquired parameters. Charge 

carrier mobilities within 1-100 cm2V-1S-1 and diffusion lengths greater than 1 micron are reported 

for different structures[63, 64]. 

2.8.  Organometal Trihalide Perovskite Image Sensors 

2.8.1.  Vertical Structure Image Sensors 

A planar heterojunction configuration consisting of an anode, a hole transporting layer, 

perovskite-based active layer, an ectron transporting layer, and cathode has been adopted for 

photodetection application due to its favorable response time and low external biasing 

requirement[65]. This planar configuration may establish a regular (p-i-n) or an inverted (n-i-p) 

structure for photodetection purposes, shown in Figure 2.8.  

 
 Figure 2.8. (a) Regular p-i-n configuration. (b) Inverted n-i-p configuration  
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 2.8.1.1.  Regular p-i-n Configuration 

This configuration consists of a conducting transparent anode coated with a highly doped 

p-type semiconductor, a photosensitive perovskite and highly doped n-type semiconductor 

followed by a high work function metal contact. This configuration has been realized using a 

variety of soft semiconductors to sandwich the perovskite content of the active layer. The stack 

of the materials must be encapsulated to avoid deterioration of the perovskite structure and 

possibly the n-type semiconductor over time. 

 2.8.1.2.  Inverted n-i-p Configuration 

The bottom layer in this configuration is the metal contact basing a stack of a highly doped 

n-type semiconductor, a photosensitive perovskite layer and a highly doped p-type layer. A 

transparent top contact is required for charge collection purposes. The stack must be 

encapsulated to prevent deterioration of the sensitive materials over time. This configuration is 

particularly desired for integrated silicon-perovskite image sensors. The electronics of the system 

can be provided using the base silicon and the fill factor of the image sensor can be enhanced 

using the inverted perovskite pixel. 

2.8.2.  Lateral Structure Photodetectors 

Photoconductors and phototransistors possess lateral structure configuration. 

Photoconductors detect the signal and produce electrical output due to the work function 

difference on their front and rear electrical contacts. Phototransistors detect the signals and 

amplifies it simultaneously. Therefore, their configuration is of great importance for image 

sensing applications. 
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2.8.2.1.  Image Sensors Based on Large Size Single Crystal Perovskites  

These pixels include a large size single crystal photosensitive perovskite with different 

front and rear contacts. Different contact materials result in a gradient in their work function. 

Therefore, generated charge carriers are forced to leave the crystal under reverse bias condition. 

According to Dong et al., the diffusion length in these single crystals might be up to 3 mm[57]. A 

UV photodetector fabricated on a single crystal perovskite (synthesized using inverse thermal 

crystallization technique) with Au/Ti/CH3NH3PbCl3/Pt configuration demonstrated a responsivity 

of 46.9 mAW-1 and a detectivity of 1.2x1010 Jones[66]. These values have proven that perovskite-

based image sensors outperform conventional image sensors even in their product development 

stage. 

2.8.2.2.  One Dimensional Perovskite Image Sensors 

Perovskite structure in the form of nanowires have been used in photodetection 

applications. The large surface to volume ratio of these structures in low dimensional image 

sensors resulted in a response time of ~ 0.3 ms , a detectivity of 2.5x1012 Jones and a responsivity 

as high as 1.3 AW-1[67]. 

2.8.2.3.  Two-Dimensional Perovskite Image Sensors 

Optimized thicknesses of the photosensitive perovskite compounds may be employed as 

a channel layer in phototransistors. These structures function like two-dimensional graphene 

layers with superior characteristics such as light absorption bandwidth tunability, shorter 

response time and simple deposition methods[68]. 
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2.8.2.4.  Perovskite-Based Heterostructure Image Sensors 

Perovskite materials can be easily hybridized with another conductor (e.g. graphene) or 

semiconductor (e.g. PEDOT:PSS, ZnO) materials to form a heterostructure with modified 

characteristics. Utilization of the hybridized materials in the configuration of an image sensor 

may feature desired properties such as faster response time or wider absorption range[69, 70]. 

2.9.  Photomultiplication in Perovskite Image Sensors 

The unique properties of the light absorbing perovskites might result in 

photomultiplication. This effect may be attributed to trap assisted charge tunneling mechanism, 

interface modification mechanism or ferroelectric polarization mechanism. A brief description of 

each of these mechanisms is listed below. 

2.9.1.  Trap Assisted Charge Tunneling 

Defect engineering is one of the many approaches to enhance the charge carrier 

transportation. Trap states may function favorably if designed to serve for trapped-hole-induced 

electron injection[71]. Dong et al. described that the presence of trap states near the surface 

might result in electron injection which enhances the gain of the device under reverse bias 

condition[45, 71, 72]. 

2.9.2.  Interface Barrier Modification 

Several studies have indicated that the quality of the electron or hole transport layer 

influences the current level upon illumination[73, 74]. The compactness and thickness of these 

semiconducting materials must be engineered to provide a defect-free interface. 
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2.9.3.  Ferroelectric Polarization Mechanism 

Light absorbing perovskite structures have shown ferroelectric behavior in their I-V 

characteristics[75]. In image sensors, under reverse bias condition, the polar domains may induce 

charge carrier separation and reduce the recombination rate resulting in higher gain[76, 77]. 

2.10.  Open Issues on Perovskite-Based Optoelectronic Devices 

Research and development on perovskite-based optoelectronic devices have not been 

able to resolve some of the fundamental issues regarding the device level performance of the 

light absorbing perovskites. These issues are listed below. 

2.10.1.  Stability  

Despite the outstanding properties of the light absorbing perovskites, the long-term 

stability of its thin films has hindered their commercialization and requires practical resolutions. 

The studies have shown the adverse effect of humidity, temperature, oxygen and UV light on the 

performance of perovskite-based optoelectronic components[78]. The device configuration and 

interface engineering are crucial parameters in reducing the degradation rate. For example, the 

presence of the mesoporous metal oxide structures alleviates the adverse effect of moisture and 

oxygen in the device[79]. Encapsulation of the devices may also protect the perovskite structure 

from exposure to the ambient[80]. In order to commercialize the highly efficient perovskite-

based optoelectronic devices, long-term resolutions are required. Therefore, further research in 

this area is highly demanded. 

2.10.2.  Ion Migration  

In perovskite compounds, the ion migration results in displacement of vacancies. The ion 

migration may be stimulated by thermal energy or local polarization in a fast (migration of iodide 
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vacancies/interstitials) or slow (migration of ions to build shallow states and distort the crystalline 

structure) mode[81]. The grain boundary passivation seems to help with the fast mode migration 

but the issue of the slow mode migration has not been resolved and requires further 

investigation[82]. 

2.11.  Conclusions and Future Outlook 

The light absorbing perovskite structures have been employed in various configurations 

to overcome the limitations of the current technology in optoelectronics industry. Lightweight, 

flexibility, low cost and light absorption bandwidth tunability of this new generation of 

optoelectronic components are revolutionary. Commercialization of these components would 

realize a highly complex set of possibilities and advance the new technologies such as machine 

vision, intelligent transport systems, flexible medical imaging and internet of things. Tailoring the 

bandwidth of the perovskites using different ratios of the halides or narrowband absorbers in 

their structures, using additional layers in the stack of materials to absorb undesired wavelengths 

have been implemented.  

However, a deeper understanding of the charge carrier mechanism in perovskite 

structures blended with different absorbers is required for mass production of perovskite-based 

optoelectronic components. Interface engineering is another consideration that should be taken 

into account for the further development of this technology. Finally, instability of the perovskite 

compounds must be addressed properly as a major obstacle on the way of commercialization of 

these devices. 
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CHAPTER 3 : EXPERIMENTAL AND CHARACTERIZATION METHODS 

 
This chapter provides a detailed description of the new generation of optoelectronic 

devices that were explored in this document. The expected performance characteristics of these 

devices, as well as the characterization techniques, are discussed.  

3.1.  New Generation of Optoelectronic Devices 

A new generation of optoelectronic devices reflect the technology of the conventional 

ones and take it a step further where the flexibility and facile manufacturing come to play due to 

the utilization of new materials. The basic configuration of every optoelectronic device includes 

a photoactive layer, with a metallurgical junction to enable charge carrier extraction with two 

ohmic contacts on their anode and cathode electrodes. The following is a description of each 

optoelectronic device covered as part of the pilot test in this project to better understand the 

fundamentals of photodiodes and consequently image sensors. 

3.1.1.  Photoelectrolytic Cells 

Dye-sensitized solar cells (DSSC)s emerged in late ninetieth developing a new 

understanding with respect to the functional materials. Up until the invention of the DSSCs, the 

semiconductor industry required labor intense, costly processing steps to dope a semiconductor 

and enhance its responsivity to optical or electrical signals. In DSSCs, metal oxides were deposited 

using sputtering, spin coating, spraying, doctor blading or ink jet printing methods. They were 

then doped through dipping them inside a solution containing organic or inorganic pigments. The 
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structure of DSSCs was almost identical to supercapacitors. The only difference was the 

employment of a photoanode instead of an anode as the working electrode.  A basic 

configuration of a dye-sensitized solar cell and a supercapacitor, two electrochemical cells, are 

shown in Figure 3.1(a) and 3.1(b), respectively.  

A DSSC consists of a working electrode, an electrolyte, and a counter electrode. The 

electrolyte must contain a redox couple. The energy harvesting process begins when the electron 

in a dye molecule is promoted to the excited level from the ground state through absorption of 

a photon. The photogenerated electron then transfers to the semiconductor conduction band 

and diffuses toward the back contact. The oxidized dye molecule is then reduced through 

oxidizing the redox mediator and regenerates its ground state. The redox couple are being 

oxidized in the working electrode and reduced in the counter electrode. This process continues 

as long as the cell receives photons to generate electric charges. 

A supercapacitor, on the other hand, consists of two porous electrodes with an 

electrolyte. Supercapacitors are often categorized based on their charge storage mechanism or 

the materials of their electrodes. Porous materials such as carbon, store charges electrostatically 

and feature the device as an electrochemical double layer capacitor. Transition metals or 

conducting polymers store charges electrochemically in their structure in response to fast surface 

and near-surface redox reactions and feature the device as a pseudocapacitor. 

Despite the rather slow development of DSSCs, their inexpensive manufacturing process 

has motivated many researchers. The understanding of the operational principles in DSSCs later 

led to an outstanding achievement in the field of optoelectronics.  
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Figure 3.1. (a) A dye-sensitized solar cell, each electrode could be represented by a capacitor. (b) 
A supercapacitor consists of two electrodes with a double layer or pseudocapacitive behavior. 

As shown in Figure 3.1(a), a DSSC device (with dye or perovskite as a sensitizer) is based 

on three different compartments. The first compartment includes the photo-active electrode 

with an electron extraction capability. The electrode has dye molecules or perovskite micro 

crystals as sensitizers placed on a metal oxide (MO) scaffold. The captured photons by sensitizers 

generate electron-hole pairs. The electrons would be extracted by the metal oxide layer. The 

considerations in this part of the cell would be the energy mismatches between the sensitizer 

and the conduction band of the MO. In a conventional DSSC, the best combination was known to 

be titanium oxide, TiO2, as the metal oxide with 3.2eV bandgap energy and, N749, black dye. The 

synthetic dyes have been designed for various band structures and those compatible with 

titanium oxide are mostly ruthenium-based dyes with slightly different bandgaps from 2.1 eV 

above. 

The second compartment is the ion transportation medium. In contrast to other 

electrochemical cells such as supercapacitors, DSSCs’ charge transportation is accomplished 

using redox couples. The redox couples with high mobility, compatible electrochemical potential, 

and high kinetic rate are desired to achieve high photocurrent and high efficiency in a DSSC.  A 
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typical electrolyte contains a redox couple dissolved in an organic solvent such as iodide triiodide 

dissolved in acetonitrile. The third compartment is the counter electrode. Platinum or carbon-

based electrodes are mostly used for the counter electrode. The operational mechanism of DSSCs 

and the charge transfer direction at each interface along with carrier lifetime is shown in Figure 

3.2. 

 
Figure 3.2. Operational mechanism of a Dye-Sensitized Solar Cell and the equations in each 
interface  

One of the highest efficiency reported for a DSSC is 11.9%[83]. In order to enhance the 

efficiency of this generation of solar cells, the semiconductor in use must be transparent and the 

redox couples must display minimum photosensitivity. Also, the synthetic dyes must possess 

proper work functions with respect to the metal oxide to reduce the loss in the dye-metal oxide 

interface. These synthetic dyes are fairly versatile; however, their low absorption coefficient and 

narrow absorption bands are limiting factors in a DSSC to reach higher efficiencies. Yet, 

substitution of the dye molecules with perovskite material overcome this issue. Kojima et al. 

reported the first DSSC with an organometal halide perovskites in 2008 [5]. 



www.manaraa.com

36 
 

3.1.2.  Photoelectrolytic Cells Layout 

The photoelectrolytic cells were realized in a cuvette with the working electrode 

connected to the negative terminal and the counter electrode connected to the positive terminal 

of a potentiostat. The cells were then placed in a dark box in direct exposure to 1 sun. The 

equivalent circuit models for the photoelectrolytic cells are shown in Figure 3.3. 

 
Figure 3.3. (a) Schematic of a DSSC with a hybrid working electrode. (b) device configuration 
under test, (c) equivalent circuit model for a DSSC[84] 

3.1.3.  Photodetectors 

Semiconductor industry seeks alternatives to the current state of the art technology of 

CCD and CMOS devices. Organic contents have been proven to be the most practical substitutes 

or complements to the current practice. The intriguing characteristics of organic electronics may 

bring a wide range of applications to existence that currently seems beyond the realms of 

possibility. As stated earlier, a slab of semiconductor with two ohmic contacts on its front and 

rear ends construct a photoconductor[24]. In order to conduct photogenerated electrons and 

holes in a specific direction, a p-n junction must be present (solar cells as an energy source). A 

reversed biased p-n junction is required to read the energy of the photons (photodetectors). The 

charge transport mechanism in organic materials varies fundamentally from inorganic ones. 

Therefore, the exciton binding dissociation must take place using several layers of materials with 
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varying HOMO and LUMO levels. A stack of materials must be built up in the architecture of the 

new generation of the photodetectors to enhance their responsivity. 

The most common built-up architecture starts with a high work function transparent 

substrate. This first layer can be a highly doped transparent metal oxide such as indium doped 

tin oxide coated on a glass substrate. A hole transporting material such as poly(3,4-

ethylenedioxythiophene) polystyrene sulfonate or PEDOT:PSS forms the second layer. A 

photoactive layer consisting of perovskite compounds and synthetic dyes is sandwiched between 

the hold transporting layer (second layer) and an electron transporting layer, low work function 

cathode, such as [6,6]-Phenyl C71 butyric acid methyl ester or PCBM. Another stacking concept 

concerning inverted photovoltaics may be realized by exchanging the functionality of the 

electrodes and building up the structure on an opaque substrate such as silicon. The desired 

vertical phase segregation in this modified concept results in improved carrier collection[85]. The 

last step in the fabrication of each photodetector must be the encapsulation process regardless 

of the stacking concept in use[86]. The architecture of two stacking concepts are shown in Figure 

3.4. 

 
Figure 3.4. (a) Regular p-i-n photodiode, (b) inverted n-i-p photodiode, (c) band structure of the 
stacked materials 
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3.1.4.  Photodiode Layout 

The stack of materials sandwiched between the anode and cathode define the active 

area. An active layer in a homojunction photodetector structure is divided into three different 

regions. The first region has the highest absorption coefficient 𝛼 and is close to the surface. The 

governing equation in this region is Beer-Lambert law. Carriers generated in this region most 

likely recombine before collection. This region is termed as Beer-Lambert region. Depending on 

the thickness of the active layer, the second region with low absorption coefficient 𝛼 experiences 

cavity effect. In the cavity region, there exist a volume generation of carriers that are most likely 

collected. The collection of carriers in the cavity region contributes the most to external quantum 

efficiency of the device. The FWHM in the response of the device can be manipulated by changing 

the onsets defining the cavity region. 

Tuning the ratios of the halide constituents of the perovskite provide the lower limit 

(short wavelength) in the cavity region of the homojunction. However, the design of a 

narrowband photodetector requires another absorbent to set the upper limit (longer 

wavelength). The third region, in the active layer, has no absorption and does not contribute to 

the charge collection. Figure 3.5(a) shows a schematic of the absorption coefficient versus 

wavelength across the width of the active region. A great deal of care must be taken in the 

selection of the absorbent molecules; proper energy level alignment is required to prevent a 

reduction in charge transfer rate and photoresponsivity.  A profound understanding of the role 

of absorbent molecules progresses the current imaging systems towards more advanced and 

low-cost productions; developing higher pixel densities, acutance and color constancy. In this 

work, the bandwidth of the photodetector is tuned/optimized using various ratios of lead salts 
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and a particular synthetic absorbent (to IR-blind the device). To develop a versatile recipe for 

selective sensing on the spectrum, the effect of the molecular structure of the absorbents is 

placed under scrutiny. Figure 3.5(b) shows the architecture of the photodetector fabricated in 

this work. 

 
Figure 3.5. (a) Light absorption and expected quantum efficiency versus wavelength for 
narrowband image sensors. (b) fabricated image sensors in the lab with various ratios of halides 
and macromolecules (two commercial image sensors are included in the image for reference) 

3.2.  Materials for Perovskite-Based Photodetectors 

This section includes the materials used in the fabrication of the optoelectronic 

components used in this dissertation. 

3.2.1.  Metal Oxides 

3.2.1.1.  Zinc Oxide 

Zinc oxide is a transparent, wide bandgap semiconductor (Eg~3.3eV) with high electron 

mobility[87]. This inorganic compound possesses piezoelectric characteristics and its 

nanostructures are widely used in the fabrication of DSSCs and field emission devices[88]. In this 

project, the conventional hydrothermal method was used to synthesize zinc oxide nanowires for 

DSSCs. A seeding solution of 10 mM of zinc acetate in ethanol was spin coated on the active area 
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of Fluorine-doped Tin Oxide (FTO) coated glass substrate at 1500 rpm for 45 s. The sample was 

then annealed at 150 °C on a hot plate for 2 min. The seeding deposition process was repeated 

10 times. The prepared substrate was placed face down in a bath of growth solution containing 

25 mM of each, zinc nitrate hexahydrate, and hexamethylenetetramine, in DI water for 2 h. The 

growth bath setup had a constant temperature at 90 °C and the growth solution was stirred at 

250 rpm. After the growth, the active area was rinsed with DI water and ethanol. A scanning 

electron microscopy image of the zinc oxide nanowires is shown in Figure 3.6. 

 
Figure 3.6. Scanning electron microscopy image of ZnO nanostructures 

3.2.1.2.  Titanium Dioxide 

Titanium dioxide (TiO2) is a wide bandgap semiconductor (Eg~3.05eV in rutile structure). 

Its nanostructures possess a transparent color and a mesoporous texture which makes them 

suitable candidates as scaffolds in DSSCs[89]. In this work, a thin film of TiO2 was doctor-bladed 

on an FTO substrate and sintered up to 500°C with a rate of 5°/min. The substrate was kept at 

500°C for 30 minutes. The temperature was then ramped down to 80°C with a rate of 5°/min. 

The sintered TiO2 substrates were then treated with 55 mM TiCl4 at 90°C for 30 min and rinsed 

with DI water and ethanol.  
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3.2.1.3.  Tin Dioxide 

Tin dioxide (SnO2) is a wide bandgap semiconductor (Eg~3.6eV in rutile structure). Its 

suitable work function, transparent color, and simple deposition methods are the driving forces 

behind the further development of this compound in the field of photovoltaics. In this work, two 

different deposition methods were employed to form a layer of SnO2 with a thickness of 100nm. 

The first method is based on the spin coating of a solution containing 0.05M of SnCl4 5H2O 

(stirred for 30min at room temperature) on an ITO coated substrate at 3000rpm for 30s with a 

200rpm/s ramp down to zero. The spinning was then followed by pre-drying at 100°C for 10 

minutes and heat treatment at 180°C for an hour[46]. The second method includes using an SnO2 

sputtering target to sputter. An SEM image of SnO2 coated ITO glass substrates is shown in Figure 

3.7. 

 
Figure 3.7. Scanning electron microscopy image of SnO2 coated ITO glass substrates 

3.2.2.  Conductive Polymers 

Polymers in nature present high resistivity to electrical conductivity unless they possess 

unsaturated double bond(s) in their structures. Depending on the number of charge carriers, due 

to the presence of the double bonds, and their configurations, these compounds might function 

similar to semiconductors or even conductors. The main advantage of these compounds is their 
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processability through dispersion. Some of these compounds display several oxidation states 

which makes them suitable candidates for energy harvesting and storage purposes, e.g. MEMS 

devices and supercapacitors[90]. Different doping levels result in a wide range of electrical 

conductivity in these compounds while maintaining their flexibility and thermal stability. 

Conducting polymers are one of the building blocks of the new generation of photovoltaics. The 

conducting compounds used in this project are described in the following sections. 

3.2.2.1.  Polyaniline  

Polyaniline (PANI) is a conducting polymer with two distinct structures: Pernigraniline 

(PNB) and Leucoemeraldine (LEU). In the PNB form, the doped polymer has a conjugated 

structure along the molecule. Therefore, the polymer is a good conductor in this state. In 

presence of an acid, the polymer can be reduced to the LEU form. The absence of the conjugated 

structure in LEU makes the polymer to be more insulating[84]. Due to the long structure of a 

polymer, many protons (H+) and electrons (e-) are required for converting a PNB molecule to a 

LEU one. Hence it is possible to partially reduce a PNB. The oxidation state in which PANI is 

partially reduced is called Emeraldine (EB). The conductivity of the polymer in EM mode is higher 

than that in the LEU mode but it is less than PNB mode. 

The ability to load the polymer with many electrons in the transition process from PNB to 

LEU makes PANI a good candidate for supercapacitors[91, 92]. This mechanism of charge storage 

in a supercapacitor with the change in the oxidation state of the polymer is known as a pseudo-

capacitive effect. Since the polymer is stable in all the oxidation states (shown in Figure 3.8), the 

stored charges are more stable than the stored charge in a double layer capacitor. Besides, the 
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low conductivity of the polymer in its reduced state is expected to present lower leakage current 

and longer charge storage time in the devised photovoltaic device.  

 
Figure 3.8. Polyaniline structure in its different oxidation states. The copyright permission in 
included in the appendix[93] 

3.2.2.2.  Poly(3,4-EthyleneDiOxyThiophene) PolyStyrene Sulfonate (PEDOT:PSS) 

Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate known as PEDOT:PSS consists of 

two ionomers. The polystyrene sulfonate or PSS carries negative charges and the poly(3,4-

ethylenedioxythiophene) or PEDOT carries positive charges. Its conductivity can be enhanced by 

doping the compound using ethylene glycol, dimethyl sulfoxide (DMSO) or other chemicals with 

similar formulae[94, 95]. It has been proven that doping of this compound results in the removal 

of more electrons from the PEDOT 𝜋-conjugated orbitals[96]. The transparent color of this 

organic semiconductor along with its superior ductility make them indispensable parts in 

fabrication of the flexible organic electronics[97]. Figure 3.9 shows the molecular structure of this 

compound and its HOMO and LUMO levels[98]. 
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Figure 3.9. (a) Molecular structure of PEDOT:PSS, (b) Energy band structure of PEDOT in contact 
with C60. The copyright permission is included in the appendix[98] 

3.2.2.3.  [6,6]-Phenyl C71 Butyric Acid Methyl Ester (PCBM) 

PCBM is a common fullerene derivative functionalized to accept electrons[99]. Structures 

of PCBM have shown high stability, an electron mobility of 10-1 and hole mobility of 10-5 -10-4 

cm2/Vs[100]. This compound is widely used in solution processable architectures as an n-type 

semiconductor[101]. The orbital energy HOMO for this material is 6eV and the LUMO level is 

3.9eV. The molecular structure of this compound is shown in Figure 3.10. 

 
Figure 3.10. Molecular structure of PCBM  
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3.2.3.  Macromolecules  

3.2.3.1.  Methylene Blue 

Methylene blue is considered as a chloride salt. It is soluble in water and organic solvents. 

It forms dimers in concentrations below 0.01M and might aggregate in higher 

concentrations[102]. Methylene blue displays a two-electron reduction. Its reduced form is 

called leuco and appears as a colorless strong base that becomes heavily colored upon re-

oxidation, the reaction is reversible[103]. The absorption spectrum of this dye is shown in Figure 

3.11. The absorption varies based on the concentration and the probability of the presence of 

the dimers.  

 
Figure 3.11. Absorption spectrum of methylene blue.  The inset is a 2D-structure of dichloropane 
methylene blue. Reproduced under (CC BY-SA 3.0) 

3.2.3.2.  Rhodamine B 

The photophysical properties of Rhodamine B such as long absorption and emission 

wavelengths, large extinction coefficient, stability and high fluorescent quantum yield makes this 

compound an interesting choice in organic thin film manufacturing[104]. The absorption 

spectrum of this compound surfaces between 500-650nm with a low energy peak at 2.22eV and 
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a high energy shoulder at 2.38eV. The peak is attributed to the first 𝜋 − 𝜋 transition and displays 

the characteristics of an excitation peak[105]. Figure 3.12 shows the molecular structure of this 

compound and its absorption spectrum. 

 
Figure 3.12. Absorption spectrum of rhodamine B.  The inset shows the molecule structure of 
rhodamine B. The copyright permission is included in the appendix[104] 

3.2.3.3.  Polyethylenimine Etoxylated (PEIE) 

Polyethylenimine ethoxylated (PEIE) and branched polyethyleneimine (PEI) are polymers 

with repeating units of the amine group and two carbon aliphatic CH2CH2 spacer. Hight contents 

of amine group (primary, secondary and ternary) alter the PH level in aqueous and 

methoxyethanol solutions resulting in lowering the work functions. Due to this capability, PEIE 

and PEI have been used for modifying the work function of metals and metal oxides in organic 

electronics[106]. Figure 3.13 shows the molecular structure of PEIE. 

 
Figure 3.13. Molecular structure of PEIE, R could be replaced by CH2 CH2 NR2, H or CH2 CH2 OH  
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3.2.4.  Solvents 

One of the great advantages of the new generation of optoelectronic devices is their 

solution processable fabrication techniques. The study of the effect of the solvents in thin film 

formation during the drying process has led to a new branch in organic electronics called solvent 

engineering[49]. Also, knowledge on the solute and solvent is critical in the fabrication of low 

loss, highly stable organic electronic devices. Various solvents were favorable for different steps 

of this project. For example, dimethyl sulfoxide reduces the evaporation rate. So, introducing a 

fraction of it in a solution made out of dimethylfomamide lingers the evaporation and give the 

perovskite structure more time to crystallize. A list of the solvents used in this work with their 

basic properties is provided in Table 3.1. 

Table 3.1. List of solvents used in this work for fabrication of optoelectronic components 

Solvent 
Chemical 
Formula 

Density 
(g.mol-1) 

Boiling Point 
UV-vis 
(𝜆𝑚𝑎𝑥, 𝑛𝑚) 

Refractive 
Index 

Propanol (IPA) C3H8O 0.786 82.6 210 1.3776 

Dimethylformamide 
(DMF) 

C3H7NO 0.948 152-154 270 1.4305 

Dimethyl Sulfoxide 
(DMSO) 

C2H6OS 1.1004 189 275 1.479 

Toluene C7H8 0.87 111 207 1.497 

Gamma-
Butyrolactone (GBL) 

C4H6O2 1.1286 204 215 1.435 

 

3.2.5.  Perovskites 

The first perovskite compound was discovered in the eighteenth century and was a 

calcium titanium oxide mineral composed of calcium titanate (CaTiO3)[107]. The crystalline 

structure of calcium titanate, ABX3, was later considered as the most practical framework for 

functional materials[34]. Recently, synthetic perovskites also known as semiconducting pigments 
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have gained popularity in the field of photovoltaics due to their high efficiency and inexpensive 

fabrication methods. In photovoltaic applications, the A site of the crystal is occupied by organic 

compounds namely methylammonium or formamidinium. Dopants such as cesium in the crystal 

would find their place next to the organic molecules. The B site is mainly occupied by a heavy 

metal such as lead. Due to the adverse effect of lead on health and environment, alternatives 

such as tin have been under consideration [108, 109].  The x site of the structure can be occupied 

by halide ions. Perovskite materials display different absorption wavelengths depending on the 

ratios of the halides or the concentration of the dopants. The absorption wavelength of different 

ratios of the halides with and without a dopant (Cs) is shown in Figure 3.14[36]. 

 
Figure 3.14. UV-Vis absorption spectra of light absorbing perovskites consisting of various ratios 
of halides without (top) and with (bottom) cesium as dopant. The copyright permission is 
included in the appendix[36] 

3.3.  Electrical Contacts 

Photovoltaics require a transparent contact with light transmission coefficient of 1. The 

contacts must possess low sheet resistance and surface roughness. The work function of the 

anode and cathode should be selected based on the work function of the photoactive materials 
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and charge carrier transportation layers. In source photovoltaics such as solar cells, the work 

functions of the stacked materials must be matched to reduce the resistance and time constant. 

In this case of photodetectors, the mismatch in the work functions does not become significant 

due to the presence of the reversed bias. However, the reversed bias might result in band 

bending of the charge carrier transporting layers and consequently Fowler-Nordheim tunneling. 

This effect increases the dark current and must be prevented[110]. An anode material with a high 

work function is required to avoid tunneling effect and charge carrier transportation from the 

anode to the polymers. Table 3.2 contains the work functions and sheet resistances of the 

materials utilized as contacts in this dissertation. 

Table 3.2. List of metal contacts utilized in this work and their electrical properties. 
Material Copper 

(Cu) 
Gold (Au) Aluminum 

(Al) 
Indium Tin Oxide 
(ITO) 

Fluorine-doped 
Indium Tin Oxide 
(FTO) 

Work Function 4.70 5.10 4.08 4.40 5.00 

Resistivity (Ω.m) 1.68 × 10-8 2.44 × 10-8 2.82 × 10-8 1.5 × 10-7 8 × 10-7 

 
 

3.4.  Fabrication of Perovskite-Based Image Sensors 

Commercial Indium Tin Oxide (ITO) coated glass substrates (15Ω sqr-1) were cleaned 

through a sequential sonication in Decon liquid detergent, deionized water, acetone and 

methanol each for 30 minutes. The ITO substrates then were dried using nitrogen flow. Image 

sensors were fabricated using cleaned commercial ITO glass substrates. PEDOT:PSS was spin-

coated on ITO at 1,000 rpm for 10s and 3,000 rpm for 30s. The film was annealed at 100°C for 20 

minutes. Following a one-step deposition method, perovskite solutions were spin coated at 

2,000rpm for 45s and annealed at 100°C for 40 minutes. A layer of PCBM in toluene (10mg/ml) 

was then spin coated at 2,000 rpm for 45s and cured at 100°C for 20 minutes. The fabrication 
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process was carried out in a nitrogen-filled glovebox with O2<30 ppm and H2O<1 ppm. In order 

to deposit a 20 nm of chromium and 200 nm of gold contact on the stack of materials and avoid 

chemical etching, a shadow mask was employed in a sputtering process. The schematic of the 

device configuration is shown in Figure 3.15. 

 
Figure 3.15. Regular p-i-n configuration consisting of the layers utilized in this study 

 

3.5.  Experimental Setup 

Figures of merit for optoelectronic components are introduced in great length in chapter 

2. In order to characterize the image sensors and measure their figures of merit, customized 

experimental setup was designed. The absorption spectrum of the imagers, the noise level, the 

magnitude and phase of the detected signals by the photodetectors were measured using the 

setup shown in Figure 3.16.  

 
Figure 3.16. The custom-made spectral response setup for characterization of the image sensors 
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The I-V characterization was performed using a semiconductor analyzer, HP4145B. The 

equivalent circuit model of an image sensor is introduced in Figure 3.17.  

 
Figure 3.17. Equivalent circuit model for an image sensor. Each pixel may be modeled based on 
a diode with parasitic capacitance and resistances associated with it. The output current is a sum 
of the photodiode current and the dark current 

IPD represents the number of generated charge carriers upon illumination and before 

recombination. An ideal photodiode requires a shunt resistance of ∞  and a series resistance of 

zero. The value of each of the components may be measured from the dark and light I-V 

characteristics of each pixel. Figure 3.18 is an illustration of the extracted information from 

semilogarithmic I-V plots.   

 
Figure 3.18. I-V plots of an image pixel with an inverted n-i-p configuration in dark and under 
illumination. Rp is the shunt resistance, Rs is the series resistance, ISCLC is called space charge 
limited current  



www.manaraa.com

52 
 

The low charge carrier mobility in organic semiconductors results in accumulation of 

charges and creation of counter electric field. This effect reduces the overall current throughput. 

This current is called space charge limited current and may be calculated using Mott-Gurney 

equation[111]: 

ISCLC =
9εμVa

2

8L3
                                                                                                                                             (1) 

where 𝜀 is the dielectric constant, μ is the mobility, Va is the voltage applied across the stack of 

material and L is the thickness of the stack of the materials. This equation may only be valid for 

films with no trap states with an exception of shallow traps with trapping time shorter than the 

charge carrier transit time[112].  Reverse bias condition exacerbates the undesired charge 

accumulation and consequently impedes photocurrent generation. I SLCS may surface in forward 

bias region where the current slop increases, Vm with m ≥ 2. Higher forward biases eliminate 

the trap states and the slope of the current transitions from Vm≥2 to V2[112]. 

3.6.  Thickness and Morphology 

The thickness of each film and the roughness of the surface was measured using Dektak 

150 surface profiler. In this profiler, a high precision stage is programmed to move the sample 

beneath the diamond-tipped stylus with a pre-determined scan length, speed and stylus force. 

These measurements are crucial in determining the performance of the optoelectronic 

components. The roughness of the surface is directly related to the interface of the layers 

determining the efficiency of the charge carrier transportation.  

The thickness of the layers must be selected based on the diffusion length of the charge 

carriers and their mobility which are intertwined with the quality of the deposited thin film. In 

fabrication of the image sensors, the thickness of the films determines the shunt resistance of 
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the device. It is a common practice to increase the thickness to achieve higher shunt resistance, 

this approach is beneficial in reducing the dark current[113, 114]. Yet, lower dark current may be 

associated with lower quantum efficiency, as thicker films may increase the rate of 

recombination and suffer from the space charge effects[115]. 

Scanning Electron Microscope (SEM) images were taken using Focused Ion Dual Beam 

Quanta 200 3D. The SEM images provide better visualization of the grain sizes and boundaries, 

the possible cracks on the surface and the interface between the layered structure. In this work, 

the effect of temperature and time on the perovskite thin films was studied based on their SEM 

images.  

X-Ray Diffraction (XRD) characterization was performed on the perovskite thin films using 

Panalytical X’Pert Pro MRD. XRD patterns indicate the formation of the perovskites and their 

crystal orientation and phase. In the case of tuned bandwidth perovskite thin films for image 

sensors, the XRD patterns clearly illustrate the effect of incorporation of macromolecules on the 

crystallite size, crystal phase, and orientation. Also, the effect of additives such as chloride on 

crystallization of the perovskites may be investigated based on the XRD patterns. 

Room temperature photoluminescence was used to identify the absorption edge (band 

gap) of perovskites thin films of different chemical compositions. To further study the intrinsic 

defects, low-temperature photoluminescence (PL) emission was collected, in the range of 35-

140K. The PL excitation source was Coherent’s Fiber Optic laser at 640 nm. An InGaAs 

photodetector was used with a built-in preamplifier and cooling system (for noise reduction). 

Signal detection was optimized using, Standard Research Corporation’s Low-Noise Amplifier 

(model SR560), along with a chopper (EG&G model 197) and a lock-in amplifier (EG&G 5209). 
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SPEX 500M monochromator with a 600 groove/mm grating was used. The temperature was 

controlled using a closed loop Helium cryo-system, which included: CTI-Cryogenics refrigerator 

using a cold finger from Helix Technology Corporation (model 22), a custom-built cryo head 

(fused silica windows) and CTI-Cryogenics model SC compressor.  A silicon diode with Lakeshore 

805A temperature controller was used for temperature sensing and control. At select 

temperatures, the photoexcitation intensity measurement ranged from 80mW down to 10mW. 
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CHAPTER 4 : RESULTS AND DISCUSSION 
 

In this chapter, the techniques described in chapter 3 were implemented to measure the 

characteristics of each optoelectronic component. The first section of this chapter includes the 

results regarding resolutions to the instability of the light absorbing perovskites. The second 

section contains the results of a detailed study on the device level charge carrier transportation 

mechanism, in solution processable perovskites, to enhance the color discrimination and 

constancy in the image sensors. Since the light absorbing perovskite structures display dual 

electronic and ionic conducting properties, various device configurations were considered to 

highlight each transportation agent, ion or electron. To study ion transportation, the 

configuration of a photoelectrolytic cell was employed[116]1. For carriers with higher mobilities, 

regular solid-state p-i-n and inverted n-i-p configurations were utilized. The results of each study 

conclude this chapter. 

4.1.  Stability of the Perovskite 

The application of organometal halide perovskite materials as sensitizers in preference to 

synthetic dyes, described in 2009, has accelerated development of the new generation of 

photovoltaic devices[117]. Perovskite solar cells (PSCs) have offered superior power conversion 

efficiency compared to other low-cost solar cells (i.e., thin films and dye-sensitized solar 

cells)[118, 119]. A broad spectrum of research on the operational mechanism and fabrication 

                                                           
1 The study was published in the Journal of Applied Electrochemistry 
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methods of perovskite-based optoelectronic components has been conducted to continuously 

elevate their efficiency and eliminate their instability and toxicity[120-122]. The mobilized ions 

and their reaction to the external stimuli are considered as the source of instability in the 

perovskites[123]. The structure of a PSC resembles a dye-sensitized solar cell. Since dye-

sensitized solar cells consist of liquid electrolytes, PSCs may also be fabricated using liquid 

electrolytes. This could be beneficial as liquid electrolytes offer faster ionic transportation 

compared to the solid-state ones. Therefore, the study of the photosensitive perovskite 

structures in the format of a solar cell, with a liquid electrolyte, accentuates the role of ionic 

transportation in the performance of the device and its instability.  

Among the hybrid organic-inorganic perovskite materials (ABX3), application of 

CH3NH3PbI3 (A = CH3NH3, B = Pb, X= I) in photovoltaics has established the most promising 

results[124]. In order to form reproducible polycrystalline structures of perovskite thin films, the 

sequential two-step deposition method was adopted[47]. In this method, a layer of PbI2 dissolved 

in a solvent (e.g. dimethylformamide, DMF) was first deposited on a metal oxide nanostructure. 

The film was cured on a hotplate to become uniformly dark yellow. A solution of CH3NH3I 

(methylammonium iodide, MAI) in isopropanol then was deposited on the PbI2 layer to form the 

perovskite crystalline structure. An instantaneous color change from dark yellow to black was 

observed once MAI solution came into contact with the PbI2 layer. This color change indicated 

the formation of the crystalline perovskites. The second deposition step was followed by a heat 

treatment to eliminate the moisture and improve the surface morphology.  

The chemical reaction in perovskite formation process is shown below: 

PbI2(solid) + CH3NH3I(liquid) → CH3NH3PbI3(solid)                                                                  (1) 
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4.1.1.  Stability Test in Liquid Medium 

One of the root causes of the degradation in light absorbing perovskites is the hygroscopic 

nature of their constituent, methylammonium cation[125]. To study the properties of 

CH3NH3PbI3 in a liquid medium, the perovskite films were tested in different organic solvents, 

including propylene carbonate and isopropanol. The film was not stable in a nonaqueous-based 

electrolyte, likely due to the moisture in the solvent. The degradation of the film to its 

constitutive precursors, CH3NH3I and PbI2, was visible as the film color changed from black to 

dark yellow indicating the presence of PbI2. The resolution to this problem manifested itself via 

administration of methylammonium iodide molecules dissolved in isopropanol as the electrolyte 

medium. We noticed a degraded perovskite film can be restored by exposing the damaged 

structure to the MAI-based electrolyte. The restoration process became evident through the 

color change of the film from dark yellow to black, again. Although a similar approach has been 

applied for fabricating a device by Xu et al., the stability and functionality of the perovskite film 

in the electrolyte were discussed in a limited scope[126]. The electrochemical characteristics of 

the fabricated perovskite-based solar cell with the customized electrolyte prove the stability of 

the film. Followings are the characterization results of the perovskite films deposited on two 

different mesoporous scaffolds, zinc oxide (ZnO) and titanium oxide (TiO2) and studied during 

their dynamic restoration. 

4.1.1.1.  Electrode Fabrication 

Fluorine-doped tin oxide (FTO) substrates (sheet resistance of 4 Ω/□) sized to 1 cm × 4 cm 

underwent several cleaning steps: soap, solvent, and mild acid cleaning with a deionized water 

rinse after each step [34]. The fabrication process of the electrodes is shown schematically in 
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Figure 4.1. For the ZnO nanowire (NW) growth, each FTO substrate was designed to have a 1 cm 

× 1 cm active area, and the rest of the surface was covered using Kapton tape. The conventional 

hydrothermal method was adopted for NWs growth[127]. The seeding solution (10 mM of zinc 

acetate in ethanol) was spin coated on the active area of the FTO at 1500 rpm for 45 s. The sample 

was then annealed at 150°C on a hot plate for 2 min. The seeding deposition process was 

repeated 10 times. The prepared substrate was placed face down in a bath of growth solution 

containing 25 mM of each, zinc nitrate hexahydrate, and hexamethylenetetramine, in DI water 

for 2 h. The growth bath setup had a constant temperature of 90°C and the growth solution was 

stirred at 250 rpm. After the growth, the active area was rinsed with DI water and ethanol. 

For TiO2 coating, the active area was sized to 0.5 cm × 1 cm. A layer of TiO2 was doctor-

bladed and sintered up to 500°C with the rate of 5°C/min and ramped down to 80°C with the rate 

of 5°C/min[128]. The sintered TiO2 substrates were then treated with 55 mM TiCl4 at 90°C for 30 

min and rinsed with DI water and ethanol. The substrates were subsequently ready for the 

sequential perovskite deposition. A 1M concentrated PbI2 in DMF was spin coated at 3000 rpm 

for 20 s on the fabricated ZnO and TiO2 electrodes. After the deposition of PbI2, the samples were 

cured on a hotplate at 90°C for 10 min. The next step was to drop casting a 0.05 M concentrated 

MAI in isopropanol on the substrates and curing the electrodes on a hotplate at 90°C for 10 

min[129]. Four FTO electrodes with different coatings were prepared for the experiments. The 

coatings were ZnO NW, ZnO NW-perovskite, TiO2, and TiO2-perovskite. The fabricated electrodes 

were used as photoanodes in the electrochemical cells with an MAI-based electrolyte containing 

0.05 M concentration of each LiClO4 and MAI in isopropanol. 
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Figure 4.1. Electrode fabrication procedure using doctor blading technique for TiO2 deposition 
and hydrothermal method for ZnO growth. The FTO substrate coated with TiO2/ZnO then 
underwent a sequential two-step deposition procedure: spin coating of PbI2 at 3000 rpm and 
drop casting of MAI, each step was followed by an annealing at 90°C for 10 min. The fabricated 
electrodes are shown as three-layered structures. The copyright permission is included in the 
appendix[116]  

4.1.1.2.  Energy Band Diagram 

The energy band diagram of the electrodes with two different metal oxide scaffolds is 

shown in Figure 4.2[130]. Despite the fairly similar energy band gap between TiO2 and ZnO, the 

cascaded energy levels in the electrode with TiO2 mesoporous structure might be the reason for 

a more efficient charge transfer. While the presented results confirm the stability and 

functionality of the perovskite layer in the electrolyte, a more in-depth study is required to 

optimize the charge circulation in a perovskite-based electrochemical cell. In particular, the effect 

of charge mediators in the electrolyte has to be studied to design a cell with a higher 

photocurrent. 
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Figure 4.2. Energy level diagram of an electrode with two different metal oxide mesoporous 
scaffolds. The energy levels are referenced to vacuum level. The copyright permission is included 
in the appendix[116]. 

4.1.1.3.  X-Ray Diffraction Characterization 

In order to confirm the stability of the perovskite layer in the MAI-based electrolyte, X-

ray diffraction pattern of the perovskite layer was acquired before and after the electrode was 

exposed to the electrolyte for the period of the experiment. The crystalline structure of the 

materials was then analyzed, and the peaks were indexed. The results are shown in Figure 4.3 (a) 

and (b). Different phases of perovskite structure were not labeled in the figures to prevent 

possible complications.  

 
Figure 4.3. XRD patterns of the TiO2–perovskite crystalline structure before (a) and after (b) being 
exposed to the electrolyte. The copyright permission is included in the appendix[116] 
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These XRD results are supported by data reported in similar studies[131-134]. The XRD 

pattern of the perovskite structure, after its exposure to the electrolyte, demonstrated almost 

no degradation. In fact, the higher intensity of the peak for (110) and slight reduction of the peak 

for (220) after the insertion of the electrode into the electrolyte suggest the constructive effect 

of the electrolyte on the crystalline structure to its main orientation at (110). The rest of the 

peaks were almost the same before and after exposing the film to the electrolyte.  

4.1.1.4.  Electrochemical Study 

To study the photochemical reactivity of perovskite materials, each of the fabricated 

electrodes was tested in a three-probe cell, in the dark and under simulated solar radiation. First, 

the electrodes were studied in a cyclic voltammetry (CV) experiment, in which the voltage of the 

working electrode was scanned back and forth multiple times between −0.8 and +0.8 V (versus 

the reference electrode) with a constant scan rate of 50 mV s−1. The CV results for each of four 

samples, in dark and light conditions, are shown in Figure 4.4. As shown in Figure 4.4(a), there is 

no evidence of reaction between the ZnO NWs and the electrolyte. Also, no difference was 

observed between dark and light responses explaining the absence of the photosensitive 

material. The rectifying behavior in the I-V curve may be attributed to the existence of an energy 

barrier at the ZnO-electrolyte interface. The response of the electrode with TiO2 mesoporous 

structure was also rectifying, Figure 4.4(c). However, unlike ZnO NWs, the redox peak 

representing the reaction between the electrode and the electrolyte was well pronounced in the 

case of the TiO2 mesoporous structure. Nevertheless, little difference was observed when the 

sample was tested in dark and light conditions. 
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As expected, the samples with the perovskite layer presented the photovoltaic behavior 

by introducing nonzero currents at zero bias under illumination, Figure 4.4 (b) and (d). Also, the 

footprint of the double layer was evident from the hysteresis. The observed redox peaks may be 

attributed to the oxidation of the iodide molecules from I−to I0 [135]. Since the same peak was 

detected in Figure 4.4 (c), the redox peak was likely due to a reaction from the ions inside the 

electrolyte and not the perovskite. It should be noted, the sample with the TiO2-perovskite, 

Figure 4.4 (c), presented such a high photocurrent that the redox peak was barely visible in the 

CV result for the illuminated condition. 

 
Figure 4.4. CV results under the dark and light conditions in four different samples: (a) ZnO NWs 
without perovskite; (b) ZnO NWs with perovskite; (c) TiO2 without perovskite; (d) TiO2 with 
perovskite. The copyright permission is included in the appendix[116] 

To study the photocurrent, the samples with the perovskite layer were biased at 0 V 

versus open circuit voltage in the dark. The current was monitored when the samples were 

exposed to pulses of light. The photocurrent results are presented in Figure 4.5 (a). The up arrows 

show the onset of illumination and the down arrows demonstrate the light cessation. The peak 
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photocurrent in the electrode with TiO2 mesoporous scaffold was 237 μA cm−2. The open circuit 

voltages of the electrodes with coated perovskite materials are also shown in Figure 4.5 (b). The 

voltages were measured versus Ag/AgCl reference electrode. The ΔV between the dark and light 

conditions was 0.401 and 0.135 V in the TiO2-perovskite and ZnO-perovskite electrodes, 

respectively. Both the photocurrent and open circuit voltage plots clearly indicated the premier 

functionality of the perovskite materials on TiO2 compared to ZnO. The gradual change of voltage 

on illumination and the sudden drop of voltage in the transition from light to dark, in both 

electrodes, suggested the charge transfer rate at the perovskite–electrolyte interface was very 

different under the dark and light conditions. To explore the differences, the impedance of both 

electrodes was measured under the dark and light conditions. 

 
Figure 4.5. (a) Photocurrent in the cells with TiO2-perovskite and ZnO-perovskite working 
electrodes. (b) Open circuit voltage in the cells with TiO2-Perovskite and ZnO-Perovskite working 
electrodes. Arrows up and down show the transitions for turning on and off the light source, 
respectively. The copyright permission is included in the appendix[116] 

The experimental electrochemical impedance spectroscopy (EIS) measurements were 

performed on the cells within the range of 50 mHz–100 KHz. The results of Bode plots for ZnO-

perovskite and TiO2-perovskite samples in the dark and light are shown in Figure 4.6. For 

frequencies higher than 100 Hz, the differences between dark and light conditions in both 
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samples were negligible. However, significant changes were observed at low frequencies when 

the samples were under illumination. 

 
Figure 4.6. Bode plots representation of the EIS results for the ZnO-perovskite and TiO2-

perovskite electrodes under the dark and light conditions. (a) The magnitude and (c) the phase 
results for the ZnO-perovskite electrode; (b) the magnitude and (d) the phase results for the TiO2-

perovskite electrode. The copyright permission is included in the appendix[116] 

Considering the phase and magnitude data at low frequencies, the samples presented 

greater capacitive behavior and higher impedances in the dark. After illumination, the sample 

with the TiO2 back contact showed an impedance drop at 63 mHz, almost two orders of 

magnitude. The drop of the impedance for the illuminated ZnO sample was also significant (~23 

times), but substantially less than the change of the TiO2 sample. The phase data showed the 
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low-frequency impedance for the illuminated samples was more resistive than capacitive. 

Nevertheless, the dark and light results implied impedances with more than one time constant 

in both samples. 

A two-stage equivalent circuit model was proposed due to the semiconducting structure 

of the perovskite and the electrode-electrolyte interface, inset in Figure 4.7(a). The first stage of 

the model included a capacitance, CPVSKT, for the depleted region in the semiconductor and a 

parallel resistor, RPVSKT, for the charge transfer through the perovskite layer. At the electrode-

electrolyte interface, we expected a double-layer capacitor, Cdl, and a charge transfer resistance, 

Rct. Additionally, the linear curve with a 45 degree angle in the Nyquist plot, especially for the 

dark experiments, Figure 4.7 (a) and (c), suggested a Warburg impedance element (W). The 

Warburg impedance is an indication of the effect of ion diffusion[136]. 

The proposed model was confirmed on the basis of a well-matched equivalent electrical 

circuit simulated by ZSim and the values for the components were extracted and tabulated in 

Table 4.1. As shown in Figure 4.7, the simulation results for the extracted component values 

corresponded to the experimental results for both samples in dark and light. In both ZnO and 

TiO2-based electrodes, the values of Rct and W varied highly between dark and light (Table 4.1). 

Increasing the conductance of W by three orders of magnitude, under illumination, suggested 

that the photoexcited reaction at the electrode-electrolyte interface was likely more kinetic-

limited than diffusion limited, whereas the small value of W in the dark could imply the 

dominance of the diffusion limited mechanism. 
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Figure 4.7. Nyquist plots of the ZnO-perovskite electrode in the (a) dark and (b) light; and the 
TiO2-perovskite electrode in (c) dark and (d) light. The simulation results for the proposed model 
are presented in all four plots. (Inset in (a): The proposed equivalent circuit model). The copyright 
permission is included in the appendix[116] 

In both samples, the electrochemical interface was between the perovskite and the 

electrolyte. The results accentuated the role of the electron transport layer (i.e. ZnO and TiO2). 

The large difference between the Cdl values. 

Table 4.1. Simulated values for the components in the proposed equivalent electrical circuit 
model. The copyright permission is included in the appendix[116] 

Description RPVSKT (Ω) CPVSKT (nF) CDL (µF) Rct (Ω) W 

(S.secˆ0.5
) 

ZnO-Perovskite 
(Dark) 

533.3 7.670 22.94 71.64 6.99E−06 

ZnO-Perovskite 
(Light) 

530.5 7.692 24.06 2844 9.51E−03 

TiO2-Perovskite 
(Dark) 

1687 2.022 3.28 16.63 5.23E−06 

TiO2-Perovskite 
(Light) 

1169 2.781 3.61 2012 1.56E−03 
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Table 4.1 suggested the effective surface area of the perovskite, exposed to the 

electrolyte, was about 7 (22.94 μF/3.28 μF) times larger in the sample with ZnO back contact than 

in the TiO2 based electrode, while the apparent area was only twice larger. This indicated the 

morphology of the perovskite layer could be affected by the structure of the underlying layer (i.e. 

ZnO NWs and TiO2 mesoporous structure). Despite the large junction area in the ZnO sample, the 

photocurrent was at least three times larger in the TiO2 sample than the ZnO-perovskite 

electrode, Figure 4.5(a). This indicates a higher charge transfer rate from perovskite to TiO2 than 

perovskite to ZnO. 

4.1.2.  Stability Test by Defect Engineering2 

Previously developed approaches for conventional semiconductors based on established 

heuristics such as Vegrad’s and Varshini’s laws have been adopted to shed a light on the 

fundamentals of the new generation of semiconductors[35, 137]. Implementation of these laws 

resulted in an understanding of the effect of various ratios of halides, X site, in the performance 

of perovskite-based optoelectronics[138]. Profound studies on the substitution of the metal site 

of the photosensitive perovskite from lead to tin have also been conducted[139, 140]. However, 

the complexity of the A site of these organometal halides has led to little understanding of their 

effect on the lattice structure and device performance. Generally, in solid state compounds, the 

crystal structure is a function of the relative atomic sizes, volume per valence electron, Brillouin 

zone edges of each constituent, and electrochemical differences between them[141]. Also, the 

presence of intrinsic defects changes the dynamics of the lattice structure[142]. The latter 

motivated us to add excess organic molecules to the precursor solution of the perovskite to 

                                                           
2 This study is under review in the Journal of Organic Electronics 



www.manaraa.com

68 
 

create intrinsic defects. We then studied the resulting deviations from the norm due to the 

presence of the defects. Our study highlighted the role of the organic molecules in the 

degradation process of the perovskite structure in both the materials and at the device level.  

Among all the photosensitive perovskite structures, MAI:PbI2, where MAI stands for 

methylammonium iodide (A site) with the chemical formula of CH3NH3I, has demonstrated the 

highest power conversion efficiencies in optoelectronic applications[143]. This effect is 

attributed to the relatively small electron affinity of the iodine constituents[144]. Therefore, the 

structure of MAI:PbI2 is significant and the focus in this study.  Aristidou et al. considered fast 

oxygen diffusion and iodide defects to be the cause of photodegradation in the perovskite 

structure[145]. However, the degradation in the perovskite structures might not be limited to 

oxygen diffusion or iodide defect migration, and further investigation is required. For this study, 

Schottky and Frenkel defects were introduced to the crystalline lattice using selected 

concentrations of MAI[142, 146]. In ionic solution, Schottky defects consist of equivalent number 

of positive and negative vacancies formed due to the lack of molecules such as CH3NH3I and PbI2 

in the lattice. These defects are benign and do not demonstrate characteristics of the trap states. 

Alternatively, Frenkel defects include equal number of vacancies and interstitials of ions such as 

CH3NH3
+, I- or Pb2+. The vacancies are propelled by the gradient of electric charges towards the 

interstitials[147]. These defects are to be considered as dopants[147]. The trap sites are only 

formed where the concentration of MAI is insufficient to form stable, non-distorted 

[PbI6(CH3NH3)n]m clusters[148, 149]. 
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4.1.2.1.  Perovskite Film Fabrication 

Commercial Indium Tin Oxide (ITO) coated glass substrates (15Ω sqr-1) were cleaned 

through a sequential sonication in Decon liquid detergent, deionized water, acetone and 

methanol each for 30 minutes. The ITO substrates then were dried using nitrogen flow. Various 

ratios of MAI and PbI2 were dissolved in DMF and sonicated for 30 minutes, see Table 4.2. Three 

different stoichiometric ratios were selected to ensure complete reaction between the 

precursors. Other ratios were selected to create excess reactant in the solution. As a result, Ratios 

A, C and E are the most frequently used photoactive perovskite structures. [143, 150]. Ratios B 

and D have never been considered for optoelectronic applications. This selection perfectly 

aligned with our approach of considering excess MAI as defect forming molecules in the 

structure. A one-step deposition of perovskite solution on bare ITO substrate was adopted[151]. 

Perovskite solutions were spin-coated on bare ITO at 1,000 rpm for 20 s and at 2,500 rpm for 40 

s.  For the purpose of this study, all the prepared films were annealed at 100°C to limit the effect 

of temperature on phase transition and crystallization[132, 152, 153]. The film preparation was 

carried out in a nitrogen-filled glovebox with O2<30 ppm and H2O<1 ppm. The resulting film had 

a thickness of 500 nm with varying average roughness of less than 100 nm for each Ratio.  

Table 4.2. Ratios under test with various MAI to PbI2 concentrations. The copyright permission is 
included in the appendix[154] 

Ratio A Ratio B Ratio C Ratio D Ratio E 

1MAI:1PbI2 2MAI:1PbI2 3MAI:1PbI2 1MAI:2PbI2 3MAI:1PbCl2 

Photodetectors were fabricated using cleaned commercial ITO glass substrates. 

PEDOT:PSS was spin-coated on ITO at 1,000 rpm for 10s and 3,000 rpm for 30s. The film was 

annealed at 100°C for 20 minutes. Following a one-step deposition method, perovskite solutions 

were spin coated at 2,000rpm for 45s and annealed at 100°C for 40 minutes. A layer of PCBM in 
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toluene (10mg/ml) was then spin coated at 2,000 rpm for 45s and cured at 100°C for 20 minutes. 

The fabrication process was carried out in a nitrogen-filled glovebox with O2<30 ppm and H2O<1 

ppm. In order to deposit a 500 nm thick aluminum contact on the stack of materials and avoid 

chemical etching, a shadow mask was employed in a sputtering process. The schematic of the 

device configuration is shown in Figure 4.8. 

 
Figure 4.8. Schematic of the configuration of the photodetectors. The copyright permission is 
included in the appendix[154] 

4.1.2.2.  Photoluminescence Analysis 

Room temperature photoluminescence (PL) was used to identify the emission wavelength 

of the varying Ratios. PL spectra were collected using an InGaAs photodetector with a built-in 

preamplifier and cooling system (for noise reduction). Signal detection was optimized using 

Standard Research Corporation’s Low-Noise Amplifier (model SR560), along with a chopper 

(EG&G model 197) and a lock-in amplifier (EG&G 5209). SPEX 500M monochromator with a 600 

groove/mm grating was used. The PL excitation source was Coherent’s Fiber Optic laser at 640 

nm. PL is a noninvasive technique used to probe the defect states of a semiconductor through 

the capture of radiative recombination transitions. Hence, the PL intensity is expected to be 

influenced by electronic defects[155]. In addition to defect states, the perovskite crystal is 

important, as the crystallite size, structure, and symmetry influence the material properties[150, 

156]. High-quality films are those with fewer electronic defects, correlating with a reduced 
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number of sub-bandgap trap states. As shown in Figure 4.9, the PL intensity was substantially 

higher for Ratio A than for the other three Ratios. Also, Full Width at Half Maximum (FWHM) was 

narrower in Ratio A compared with other Ratios indicating stronger electron-phonon coupling in 

this Ratio[157]. Weaker electron-phonon coupling translates directly to lower charge carrier 

mobility[158]. We were not able to obtain the luminescence of Ratio E in the room temperature. 

To isolate the thermal influence on defect states, PL results were collected and reported at 30K 

for only Ratio E.  

 
Figure 4.9. Room temperature photoluminescence spectra of different perovskite Ratios with 
excitation intensity at 80mW/cm2. Ratio A and C are the most frequently used combinations for 
optoelectronic applications. Elemental defects such as MA vacancies might be the source of 
defect density in Ratios B and D. The copyright permission is included in the appendix[116] 

In Figure 4.10 (b), the PL intensity versus excitation intensity is provided for all Ratios. The 

photoexcitation intensity measurement ranged from 80mW to 10mW. PL intensities for Ratios A 

through D were collected at room temperature while the PL for Ratio E was obtained at 30K.  
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Figure 4.10. (a) Intensity dependence of MAI:PbI2 film performed at room temperature; (b) 
Relationship between the photoluminescence intensity (I) versus excitation power (L), governed 
by 𝐼~𝐿𝑘 , where k values are shown in the inset. The copyright permission is included in the 
appendix[154] 

Considering the PL peak positions presented in Table 4.3, the mixed halide precursor at 

Ratio A (773 nm) displays a 35nm red shift to Ratio B (738nm), a 10nm red shift to Ratio C (763 

nm) and a 20nm blue shift to Ratio D (793 nm). In addition, the mixed halide precursor of Ratio E 

(560 nm) displayed a large blue shift compared to all the other Ratios, at low temperature. 

Table 4.3. Wavelength of different Ratios. The copyright permission is included in the 
appendix[154] 

 Wavelength (nm) 

Ratio A 773 

Ratio B 738 

Ratio C 763 

Ratio D 793 

Ratio E 560 

 

4.1.2.3.  X-Ray Diffraction Analysis 

XRD patterns from the perovskite structures indicated coexistence of cubic, tetragonal 

and orthogonal phases in each film. All the patterns were comprised of diffractions from (020), 

(110), (004), (220) and (224) in orthorhombic and tetragonal phases, see Table 4.4 and Figure 

4.11. A sequence of diffraction planes was repeated in the first three Ratios. The only difference 
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in this sequential pattern was the appearance of (112) in Ratio B and (112) and (202) of tetragonal 

phase in Ratio C. This observation is attributed to the increasing concentration of polar 

methylammonium and iodide ions in the first three Ratios. Methylammonium ions with a C3v 

symmetry introduce disorder in cubic and tetragonal phases as their atomic positions cannot be 

fixed in the unit cell of the structure[132, 153, 159]. 

Table 4.4. Peak heights for lattice planes of all the ratios. Superscript numbers show the lattice 
structure: Orthorhombic (1), tetragonal (2) and cubic (3), The copyright permission is included in 
the appendix[154] 

 

In the case of tetragonal phase, the disorder is merely attributed to carbon and nitrogen 

atoms. The iodide ions possess fixed atomic positions in tetragonal phase[160]. A smooth 

transformation from tetragonal to cubic phase was observed in Ratios D, as shown by the peak 

in the XRD plot in Figure 4.11. Coexisting tetragonal-orthorhombic phases indicated order-

disorder transition of methylammonium ions in the lead-iodide framework via hydrogen 

bonds[161, 162]. This observation in Ratio E supports the long known effect of chloride ions on 

ordering the unit cell structure reported by Luo et al[163].  
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Figure 4.11. XRD Patterns of all the Ratios. Common planes are shown on the plots. The copyright 
permission is included in the appendix[154] 

The crystallite sizes were determined from FWHM values of the XRD peaks. The crystallite 

sizes were in sub-micron scale and comparable along various directions for all the Ratios except 

Ratio D. The FWHM of each peak in Ratio D was wider, indicative of the formation of 

nanostructures in the film. Ratio D registered a maximum of 64nm crystallite size in [220] 

direction and a minimum of 9.7nm in [022] direction. The higher concentration of lead iodide in 

Ratio D only reduced the crystallite size  due to the additional effective charge in the hybrid 

resulting in tetragonal-orthorhombic phases[164]. Given the same thickness of each film, the 

peaks were more pronounced and intensified as the ratio of organohalide increased, see Figure 

4.11. This might indicate higher degrees of crystallization in Ratios B, C and E, which translates 

directly to lower decomposition rate[165]. 
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4.1.2.4.  Scanning Electron Microscopy Analysis 

It is known that perovskite deposition on a mesoporous template, such as PEDOT:PSS, 

facilitates the charge carrier transportation and minimizes the pinholes by condensing the 

film[166]. However, in this study the focus was on the variations in the morphology of different 

Ratios. Therefore, we eliminated the template and deposited the films on bare ITO. As shown in 

Figure 4.12, the morphology of the thin films varies from Ratio A to E. Hence, the grain sizes and 

domain structures differ for each Ratio. These effects are particularly important in applications 

based on ferroelectricity and piezoelectricity of perovskites[167, 168]. The grain size impacts the 

dielectric coefficient and remnant polarization as well as the coercive force[169, 170]. Ratio A 

displayed a uniform morphology with minimum pinholes and surface roughness, while Ratio B 

showed fibrous structures and porous texture. This feature of Ratio A results in highly reliable 

junctions in optoelectronic devices [171, 172].  

 
Figure 4.12. Scanning Electron Microscopy of the morphology of Ratios A-E on ITO glass with no 
mesoporous scaffold. The copyright permission is included in the appendix[154] 

Ratio C formed palmate shaped microstructures with high surface area, suggesting higher 

light absorption compared with Ratio B. Also, the chemistry of the perovskite solution provides 

a bilateral reaction between methylamine and hydrogen iodide producing methylammonium 

iodide. The concentration in Ratio C might only form Schottky defects. Schottky defects are not 

considered as trap states[142] Therefore, their presence in the material does not affect the 

degradation rate.[123]. Two parts of lead iodide in Ratio D resulted in the roughest surface 
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among all Ratios. Although the surface was formed on submicron needle structures, the 

decomposition rate was extremely high, as there may have not been adequate 

methylammonium iodide constituents in the solid form to maintain the perovskite structure. The 

replacement of lead salt in Ratio E resulted in the formation of smaller grain sizes. The color of 

the film appeared metallic gray, noticeably different than the other four Ratios explored. 

4.1.2.5.  Electronic Properties 

For the purpose of this study, we have presented the device performance in dark and 

under illumination. The dark current measurements address the effect of defect density in device 

level. The dark current level is primarily attributed to the mobility of the charge carriers, trap-

assisted recombination, doping density of the semiconductor and work function of the 

electrodes[43]. Given the devices are identical except for their active layer, the changes in dark 

current level convey variations based on the functionality of the perovskite photosensitive layers 

and their physical structures. The dark current density at zero applied potential in the 

photodetectors is tabulated in Figure 4.13. Device D had the highest dark current density, 10-8 

Acm-2 with a low shunt resistance [173]. This level of dark current and shunt resistance in Ratio 

D introduces reliability issues in the device level. Device D showcased the highest photocurrent 

among other devices. However, its open circuit voltage was zero. The ideality factor greater than 

one also indicates that in all of these active layers, the recombination current is dominant. 

Considering that higher thickness  in these bulk materials results in higher shunt resistance, low 

values of dark current and high shunt resistances are attributed to the optimized thicknesses of 

the photosensitive materials[174]. 
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Figure 4.13. Representative dark current density-voltage (J-V) curves for the photodetectors with 
different active layers. The copyright permission is included in the appendix[154] 

The disordered nature of solution processing deposition has made the study of the 

defects in organo-metal halides quite challenging. The discrepancies between the values for 

defect densities obtained by the first principle studies of density functional theory (DFT) and 

those obtained experimentally are a requirement for further scrutiny. Defects may be invisible 

to various techniques due to their positions in the lattice or the charge distribution around them. 

The defects may also be influenced by the probing signal, as it might cause them to change 

orientation or equilibrium distribution. Nie et al. discussed the effect of light packets on altering 

the dynamics of the trap states in these perovskites and suggested a self-healing 

mechanism[175]. Here, the results of our study were fairly aligned with the first principle findings 

on these perovskite structures.  



www.manaraa.com

78 
 

It has been shown that perovskite structures display a first-order transition from 

orthorhombic to tetragonal phase around 165K[152]. In fact, this transition places the cation 

molecule in a fully disordered configuration. The cation would no longer possess anti-

ferroelectric properties to increase exciton recombination rate. At higher temperatures, around 

352K, a second-order transition occurs from tetragonal to cubic phase. Pure cubic phase has an 

Oh symmetry. Thus, the MA cations with C3v symmetry would pose random orientations in a (PbI3-

) n network. As seen in our XRD results, orthorhombic, tetragonal and cubic phases coexist in the 

Ratios prepared at a constant temperature, 373K. The Schottky defects in organo-metal halides 

are mostly referred to as MA+, Pb2+ and I- instead of MAI and PbI2[147]. Therefore, the vacancies 

derived from both Schottky and Frenkel defects can be studied all in one. 

Considering all the aforementioned possibilities, a constant trend appeared to explain the 

effect of excess MAI molecules in the structure of our perovskite materials. Through PL analysis, 

the spectra for Ratio A was regarded to have the least sub bandgap transitions indicated by its 

narrow emission band. Assuming Ratio A as the base concentration, the adverse influence of the 

intrinsic defects was captured in the emission spectra of the other Ratios.  Furthermore, the 

luminescence intensity of the emission band is proportional to LK, where L is the excitation power 

and k is an exponent between 0 and 2, presented in Figure 4-10(b). The radiative transition are 

identified as exciton-like when 1<k<2  and free-to-bound and donor-acceptor pair transition 

when k<1 [176]. The fairly linear slope of Ratio A demonstrated the exciton like behavior of the 

material suggesting minimum trap states in the compound.  

The different concentrations of disordered organic cations may change the crystallite size 

and the presence of additional iodide ions may distort the unit cell orientation[162]. The higher 
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concentration of lead iodide in Ratio D may have caused the lower PL intensity compared with 

Ratio A. This observation correlated well with XRD results, where Ratio D possessed the smallest 

crystallite size among other Ratios. A comparison between Ratios B and C showed the change in 

the functionality of the material based on the concentration of the disordered defects. Although 

the level of induced intrinsic defects in Ratio B was lower than Ratios C and E, the dominant non-

radiative transitions in it produced the lowest PL intensity of all. This observation in Ratio B may 

be a result of higher defect density in the structure. Another support is the unique k value of <1 

for Ratio B, showing a transition related to a defect state and not a free exciton.  

The presence of chloride ions in Ratio E changed the lattice structure to the extent that 

this compound was considered a wide bandgap semiconductor. The absence of room 

temperature PL in Ratio E may be a result of the change in lattice orientation. Disordered organic 

compounds give higher photoluminescence than crystalline ones[177, 178]. The incorporation of 

chloride ions orders the orientation of the unit cell and reduces the effects of induced intrinsic 

defects. Furthermore, the SEM image of Ratio E illustrated the effect of chloride ions in higher 

degrees of crystallization as supported by its XRD results[165]. Based on the acquired electrical 

properties, A and C photosensitive layers had the best performance with arguably very low dark 

current. Ratio B had a reasonably low dark current density but a wide PL band, indicative of 

weaker electron-phonon coupling. The level of intrinsic defects in Ratio D resulted in high dark 

current in the photodetectors. Although photodetectors based on Ratio E established higher dark 

current density compared with A and C, their application might be different due to the lower 

absorption wavelength.    



www.manaraa.com

80 
 

Again, these observations were well aligned with the findings of the first principle DFT 

conducted by other groups[142, 179]. In the event that the concentration of the disordered MAI 

molecules surrounded by eight PbI2 octahedrons is not sufficient to form the ideal clusters of 

[PbI6(CH3NH3)n]m, the MAI molecules act as trap states[153, 180]. This was the case in Ratio B 

resulting in the lowest PL intensity, even though it had a high degree of crystallization. Also, 

adequate concentrations of MAI in Ratios C and E were sufficient to form the clusters. Excess 

halide ions in these two Ratios may have further acted as dopants, which may be the reasoning 

for adopting these two structures as the photosensitive layers in addition to the typically used 

Ratio A[142, 150]. In fact, higher degrees of crystallization in Ratios C and E may reduce the 

degradation rate in these perovskites.  

4.2.  Effect of Thickness on the Performance of the Perovskite Image Sensors  

In the stacked architecture of the image sensors, the thickness of each layer plays a 

significant role in the gain of the component. In conventional semiconductors, the Beer-Lambert 

law describes the attenuation process of the light passing through a light-sensitive matter. 

However, this law requires correction factors to account for the internal optical electric field 

distributions inside the organic compounds[181]. Here, the effect of thickness of the light 

absorbing perovskite layer on the performance of the device was studied. The test devices 

possessed the same structures with the thickness of the perovskite layer as their only difference. 

In the first device, the photoactive layer was deposited using spin coating method yielding an 

active layer with the thickness of 300nm. In the second device, a one-micron thick photoactive 

layer was produced using dipping method. The current-voltage characteristics of two of the 

devices is shown in Figure 4.14. 



www.manaraa.com

81 
 

 
Figure 4.14. I-V characteristics of the devices with (a) thin layer of perovskite (b) thick layer of 
perovskite in dark (black) and under illumination (red) with a light intensity of 5mWcm-2. 

As seen in Figure 4.14, the dark current level decreased by an order of magnitude in the 

device with a thicker photo-absorbing layer. The photocurrent level is also reduced. This may be 

attributed to the most likely higher concentration of the defect states in the thicker layer of the 

perovskite[182]. The open circuit voltage of the device had a slight rise, but the short circuit drop 

kept the fill factor almost the same in both devices. The mobility of the charge carriers and their 

diffusion lengths set an upper limit on the thickness of the light absorbing materials. Also, the 

extension of the depletion width at the interface of the light absorbing materials with the 

electron and hole transportation layers sets a lower limit on the thickness of the perovskite layer. 

Although the mobility of the charge carriers in the perovskites is fairly high, an optimized 

thickness value would include considerations with respect to the modest mobilities of the 

carriers, 10-5 to 10-3 cm2/Vs,  in the adjacent layers to the perovskites[183].  The operation of the 

image sensors in reverse bias mode reduces the effect of poor mobility. However, reverse biasing 

results in higher dark current levels[184]. A common approach to lower the dark current level is 

to thicken the photosensitive layer. This approach results in higher shunt resistance but 

compromises the external quantum efficiency of the device. 
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4.3.  Electron Flow Rectification 

In order to enhance rectification characteristics of the image sensors and reduce the 

recombination rate, the differential of the energy levels between the photosensitive thin film and 

its adjacent layers were adjusted. This was realized through the substitution of the A site of the 

perovskite structures. Application of three different cations in the A site of the perovskite has 

resulted in photovoltaic effects. The first cation is methylammonium which produces high-

efficiency perovskite structures with a band gap of 1.5-1.6 eV[185]. As discussed in the stability 

section of this chapter, methylammonium introduces disorder in the crystalline structure 

resulting in thermally unstable perovskites.  

The presence of methylammonium in the structure leads to the halide segregation 

instability especially when used in an equimolar ratio with the halides[186]. The second cation is 

formamidinium which is known for producing thermally and structurally balanced light absorbing 

perovskites with a band gap of 1.47eV[187]. Long term stability of the formamidinium based 

perovskites may be guaranteed if the A site is occupied by a combination of formamidinium and 

cesium (third cation)[36]. In order to optimize the rectifying characteristics of the image sensors 

methylammonium was substituted by a combination of formamidinium and cesium. The cesium 

doped perovskite structure established higher shunt resistance. Its superior rectifying marks are 

shown in Figure 4.15.  
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Figure 4.15. I-V characteristics of (a) MAPbI3 and (b)FA0.8Cs0.2PbI3. The slope of the rectifying 
section changes from 4.23 to 6.94. 

Substitution of methylammonium with a combination of formamidinium and cesium 

resulted in enhanced rectification. Also, series resistance increased resulting in higher dark 

current level. This tradeoff is affordable as the yellow phase in the second device was no longer 

an issue and the devices were more stable over the time.  

4.4.  Charge Carrier Transportation 

4.4.1.  Effect of Hole Transporting Layer in Reducing the Recombination Rate  

Dark current level is one of the most important characteristics of each image sensor[188]. 

The dark current level unfolds information regarding the quality of the image sensors, the charge 

carrier recombination rate and the noise level especially in light-starved application without using 

active cooling systems[189]. Among different layers of the stacked architecture of a perovskite 

image sensor, the characteristics of the hole transporting layer, PEDOT:PSS, requires further 

scrutiny due to the unconventional rules governing its charge transport mechanism. To better 

understand the role of the hole transporting layer, a buffer layer was employed between the 

transparent anode and the hole transporting layer. A 1000 Å of tin oxide, SnO2, was sputtered on 
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the indium doped tin oxide, ITO, covered glass substrate. The dark current measurements of 

three different image sensors with and without this buffer layer is shown in Figure 4.16.  

 
Figure 4.16. Dark current measurements of three different image sensors without and with a 
buffer layer in their structure. 

The diode rectification was compromised in the bromide and bromide/iodide-based 

image sensors as their leakage current was higher in the presence of the buffer layer. The 

bromide-based (first column from the left) image sensor displayed the lowest level of dark 

current without the buffer layer. The bromide/iodide-based image sensor (middle column) 

showed the highest level of dark current and the iodide-based image sensor (right column) 

demonstrated improved performance in the presence of the buffer layer. This observation 

emphasizes the importance of the energy level engineering and the quality of the photoactive 

layer in the performance of the device.  

Although the mobility of the charge carriers in a conducting polymer such as PEDOT:PSS 

is modest, it does not influence the dark current level drastically. All the image sensors without 

the buffer layer showcased an arguably low dark current. The presence of the buffer layer 
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seemed beneficial in the case of the iodide-based image sensors as it may have reduced the 

leakage current present due to the naturally highly porous structure of iodide-based perovskite 

layer. It may be worth noting that the surface morphology roughens as the concentration of the 

iodide in the perovskite precursors increases. Another consideration, in this case, is the 

generated photocurrents upon illumination. The photocurrent level (not shown on Figure 4.16) 

is at least two orders of magnitude higher than the dark current in devices without the buffer 

layer. Whereas the presence of the buffer layer reduces the photocurrent level to only an order 

of magnitude higher than the dark current level in the devices operating with the buffer layer 

embedded in their structure. The photocurrent level highlights the minimum adverse effect of 

the conducting polymer in charge transportation mechanism of these image sensors.  

4.4.2.  Effect of the Electron Transporting Layer on the Performance of the Image Sensors 

The regular concept of the image sensors requires an electron transporting layer, an n-

type semiconductor, as its cathode. A fullerene derivative semiconductor such as PCBM may be 

used to propel the electrons and dissociate the generated exciton inside the light absorbing layer. 

This layer must be protected against moisture and oxygen. So, a protective layer such as PMMA 

may be applied on top of the PCBM layer. There are only a few solvents that may dissolve PCBM 

and serve as an orthogonal solvent for PMMA. Among the organic solvents, acetone dissolves 

PMMA and is highly volatile. Several devices were fabricated using PCBM (dissolved in toluene) 

as the electron transporting layer and PMMA (dissolved in acetone) as the protective layer with 

aluminum contacts. The devices were extremely noisy and improper for image sensing 

applications.  
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Devices without the protective layer were not as noisy but demonstrated poor rectifying 

characteristics even with highly conductive back contacts such as chromium and gold. These 

devices were degraded in less than a month. Application of a layer of PMMA dissolved in toluene 

directly on the light absorbing thin film and utilization of highly conductive contacts namely 

chromium and gold produced higher rectifying characteristics and shunt resistance as shown in 

Figure 4.17. 

 
Figure 4.17. IV characteristics of image sensors in dark and light; (a) PCBM on FA0.8Cs0.2PbBr3 and 
(b) PMMA on FA0.8Cs0.2PbBr3 with Cr/Au as the back contacts, the light intensity of 5mWcm-2. 

As shown in the Figure above, the open circuit voltage in the device with PCBM is zero 

whereas the device with only PMMA on the light absorbing layer shows a 0.57 V in open circuit 

condition. Also, the photocurrent level in the second device is two orders of magnitude higher 

than the dark current density. The short-circuit current density in this device is 0.6mA/cm2 

indicating of a highly efficient active area operation. Given PMMA possesses a band gap of 5.6 

eV, its energy structure fits right between the conduction bands of perovskite and 

chromium[190].  
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4.5.  Effect of the Additives in Optoelectrical Properties of the Image Sensors 

There are several ways to change the characteristics of a semiconductor material or 

improve them to desired values. Chloride treatment has been proven effective in the cadmium 

telluride based solar cells. Since chloride has established modifying effects on the performance 

of light absorbing compound and is also a halide, its effect on the perovskite structures was 

studied. The chloride atoms were added to the perovskite compound following Vegard’s law. The 

I-V characteristics of the perovskite-based image sensors without and with chloride atoms in their 

structures is shown in Figure 4.18. 

 
Figure 4.18. I-V Characteristics of image sensors without (top row) and with (bottom row) 
chloride atoms. The light intensity of 5mWcm-2. 

The presence of the chloride atoms reduced the dark current density of the device. It also 

increased the shunt resistance of the device. The photocurrent density of the devices with 

chloride in their structure was lower compared with the devices without chloride. This 

observation correlates with our previous results from the photoluminescence response of the 
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devices with chloride atoms in their structures. It appears chloride atoms enhance the 

crystallinity of the perovskite compound (observed in the SEM images reported in Figure 4.12). 

Based on several studies, the luminescence response of the highly crystalline structures 

is lower than those with lower crystallinity[177, 178]. This may be translated to lower absorption 

rate as well. Lower absorption rate explains the photocurrent level in the plots in the bottom row 

of Figure 4.18. As concluded in the crystallinity study in this chapter, perovskite structures with 

only iodide ions are highly porous. Hence, the effect of chloride ions in enhancing the crystallinity 

of the structure improves the overall response of the iodide-based perovskites in dark and under 

illumination. This may be the reason behind lower dark current, higher photocurrent and 

improved rectifying behavior in the devices based on iodide and chloride. 

4.6.  Color Discrimination in the Image Sensors via Charge Collection Narrowing Mechanism 

Light absorption in the perovskite structures is mainly determined based on the 

absorption characteristics of the active halide elements in it. Different ratios of the halides in the 

structure alter its absorption pattern across the visible spectrum. Hence, the responsivity of the 

image sensors changes for different ratios of the halides. The photocurrent level of the image 

sensors fabricated based on different ratios of bromide and iodide following MAPb(I(1-x)Brx)
3
 is 

shown in Figure 4.19. 
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The absorption spectrum of three different ratios of the halides in three different image 

sensors in shown in Figure 4.20. The responsivity of the image sensors displays a blue shift from 

800nm for iodide constituents to 650nm for bromide constituents.  

 
Figure 4.20. Absorption spectrum of the image sensors changes through the visible range as the 
ratio of the halide varies from 1 to 0.5 and then 0 for each bromide and iodide. 

The above Figure shows the tunability over the lower absorption limit in an image sensor 

through varying halide constituents. For an image sensor to deliver the required color 

discrimination, an upper absorption limit is required. This requirement may be realized using 

macromolecules such as synthetic dyes with sharp absorption spectra. The presence of the 

Figure 4.19.  Responsivity of the image sensors fabricated based on MAPb(I(1-x)Brx)
3
 for varying 

x values. The inset of each plot includes the absorption spectrum of the diodes used as the light 
source 
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macromolecules in the perovskite blinds the structure over certain range of frequencies and 

narrows the bandwidth. The absorption spectrum of the compound of the perovskites and 

macromolecules were inquired. The collected data was similar to what have been reported in the 

literature. In this dissertation, methylene blue was examined for the first time for charge 

collection narrowing purposes. Methylene blue may be considered as a chloride salt. Hence, 

application of methylene blue serves two purposes, charge collection narrowing and crystallinity 

enhancement. The effect of additive material in the case of methylene blue was examined and 

the results indicated the constructive impact of this compound on the crystallinity of the 

structure. The absorption spectra of three different compounds with and without methylene blue 

is shown in Figure 4.21. 

 
Figure 4.21. Absorption spectrum of image sensors fabricated based on three different perovskite 
compounds without and with methylene blue (a) bromide-based perovskite structure (b) 
bromide-iodide based perovskite structure (c) iodide-based perovskite structure 

The macromolecules within the perovskite structure form thick bulk (~700nm) 

heterojunctions. The modest charge transport properties in these thick junctions result in loss in 

surface photocarrier generation. In fact, the presence of these bulk heterojunctions changes the 

internal quantum efficiency of the devices and only volume generated photocarriers may be 

extracted. As seen in the figure above, the spectral response of the devices with methylene blue 

possess narrow bandwidth and are almost flattened. The spectral response of the devices can be 
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easily tuned through increasing the concentration of the macromolecules and constructing more 

junctions. The external quantum efficiency of three different halide ratios without and with 

methylene blue is shown in Figure 4.22. 

 
Figure 4.22. External quantum efficiency of the image sensors with different compositions in their 
active layers (a) bromide-based perovskite (b) bromide-iodide-based perovskite (c) iodide-based 
perovskites (-3.3V) 

The spectral response and consequently the quantum efficiency of the devices vary upon 

variation in the halide ratios. Although the concentration of the macromolecule was kept 

constant, the heterojunction thickness varied for each film. This may be due to the crystalline 

structure of each perovskite compound. Some compounds form higher density and lower 

porosity structures. The junction in those compounds may be thicker than the junction in 

compounds with lower density. Thicker junctions result in the extraction of volume generated 

photocarriers, whereas thin junctions result in extraction of both surface and volume generated 

photocarriers[191]. Given the bromide structure possess higher quality, the junction thickness in 

this compound is higher. This justifies the narrow FWHM in the bromide-based perovskite which 

grows as the ratio of the bromide decreases.  

The responses of the image sensors indicate the effectiveness of methylene blue in 

discriminating red color across the visible range. The FWHM of the absorption spectrum may be 

tuned only by increasing the concentration of methylene blue in the structure. It should be noted 
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that the halide constituents are the chief parameters in manipulating the internal quantum 

efficiency. The external quantum efficiency of the image sensors decreases to a considerable 

degree due to the color discrimination-based detection of the image sensors. To the best of our 

knowledge, the highest external quantum efficiency for image sensors operating on charge 

collection narrowing is no more than 15%[191]. The charge collection narrowing in our study 

resulted in image sensors delivering 10% quantum efficiency in average under -3.3V reverse bias. 

The responsivity of the image sensors with an average quantum efficiency of 10% is 0.047 (A/W) 

under a 5mWcm-2 irradiance in 0 bias condition. Similar values have been reported for 

narrowband detectors photodetectors[114, 192]. Considering the noise current to be in 

picoampere level, the detectivity of the devices are in the order of 1011 Jones which is 

considerably higher than the commercial photodetectors dominating the current detector 

market.  

The photoresponse of the image sensors were measured upon illumination by varying 

light intensities. The image sensors established a linear dynamic range of over five orders of 

magnitude under different biasing conditions, conventionally expressed as LDR=100dB. Figure 

4.23 shows the linear dynamic range of an image sensor with bromide as its halide and methylene 

blue in its photoactive layer structure. The deviations from the norm surfaced in higher light 

intensities. This may be an indication of the presence of bimolecular recombination, a secondary 

recombination (non-geminate) mechanism in the Beer-Lambert regime[44, 193]. The results 

indicate the effectiveness of methylene blue in discriminating the color around 650nm with a 

FWHM of 100nm.  
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Figure 4.23. Linear Dynamic Range measured at -1V biasing condition for a bromide-based image 
sensor with methylene blue, the fiber optic light source is a Schott KL 1500. 

4.7.  Vertically Integrated Hybrid Image Sensors 

The electric signals produced by each image sensor must be collected and processed 

through an application specific integrated circuit and a microprocessor. Integration of a regular 

concept image sensor with its required circuitry results in a considerable loss in interconnects 

and may be easily avoided in an inverted concept of the image sensors. This concern led to the 

realization of the inverted concept of the image sensors in this dissertation. The opaque substrate 

was a p-type silicon doped with phosphorous (0.74Ω-cm) with 200nm of thermally grown silicon 

dioxide (to avoid hydrophobicity). The substrate was patterned with 200nm of gold. A layer of 

PCBM was then deposited on the substrate3. The perovskite was spin coated on the layer of 

PCBM and sandwiched by a layer of PEDOT:PSS, the stack was then encapsulated by a layer of 

PMMA to avoid ambient exposure. The external quantum efficiency response of the devices with 

an inverted architecture without and with methylene blue is shown in Figure 4.24. 

                                                           
3 PCBM should be dissolved in chlorobenzene not toluene to avoid hydrophobicity 
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Figure 4.24. External quantum efficiency of hybrid image sensors without methylene blue and 
with it at 1V biasing. 

The narrow peak in the quantum efficiency implies the presence of thick junctions in the 

stack of materials. The macromolecule sets an upper limit for the bandwidth resulting in color 

discrimination around 650nm with a FWHM of less than 100nm. The I-V characteristics of the 

device with and without methylene blue in the perovskite layer is shown in Figure 4.25. 

 
Figure 4.25. I-V characteristics of the vertically integrated perovskite-silicon image sensors 
without and with methylene blue in their structure. The light source has an intensity of 
5mW/cm2. 

The minimum current level for biasing within open circuit voltage to V=1V may be 

calculated based on exp(qV/nKT) function, Shockley equation for inorganic diodes, where q is the 
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magnitude of electronic charge, V is the voltage, n is the quality factor, K is Boltzmann constant 

and T is the temperature. Due to the modest mobility of the charge carriers in organic layers, 

biasing condition beyond V=1V results in space charge limited current[194]. The dominant space 

charge limited current bends the current slope downward. Considering Vm with m≥ 2 as the slope 

indicator, V4 fits the slope of the current curve the best[195, 196]. In an inverted concept, m=4 

implies the existence of the trap states or field dependent mobility of the charge carriers. This 

may be attributed to the functionality of the oxide in generating interface states which results in 

accumulation of the charge carriers and change in the electric field[197, 198]. The overall current 

gain is lower in the inverted concept of the image sensors. The presence of the macromolecule, 

methylene blue, suppresses the photocurrent even further, which may suggest an underlying 

space charge limited current condition in charge collection narrowing mechanism.  

The linear dynamic range in inverted architecture with the macromolecule is almost 3 

orders of magnitude, conventionally stated as 60dB. The reason for the drop in LDR value might 

not only be the bimolecular recombination, but also the differently formed perovskite 

microstructure on a silicon dioxide template coated with PCBM. The LDR plot for the image 

sensor with methylene blue is shown in Figure 4.26. 

Tuning the bandwidth of the image sensors results in a responsivity drop from 190 to 24 

(mA/W) under a 5mWcm-2 irradiance in 0 bias condition. These values still establish a detectivity 

in the range of 1011 Jones which is much higher than the current operating photodiodes in the 

market[31]. The specific detectivity improves when the system is biased. The reason might be 

attributed to the trapped photogenerated holes accumulated at the interface of the perovskite 
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and metal contact. These trapped charge carriers might reduce the height of Schottky barrier and 

enhance the thermionic current[199]. 

 
Figure 4.26. Linear Dynamic Range measured at 1V biasing condition for a bromide-based hybrid 
image sensor with methylene blue, the fiber optic light source is a Schott KL 1500. 

The specific detectivity may improve upon downscaling the pixel size to form compact 

perovskite structures. The high detectivity and facile fabrication process of these image sensors 

makes them promising candidates for the emerging sensing applications[200]. 
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CHAPTER 5 : CONCLUSION 
 

5.1.  Summary 

The objective of this dissertation was to design and fabricate vertically integrated hybrid 

perovskite-silicon image sensor, operating under a specialized charge collection mechanism to 

detect photons with specific wavelengths. In order to overcome the challenges of the realization 

process of this objective, several approaches were developed and utilized. First, the principles of 

the operating mechanism in most of the optoelectronic devices were examined. This included 

the study of the dye-sensitized solar cells and photosensors as electrochemical units or solid-

state devices[84, 201-203]. These studies further clarified the functionality of the light-sensitive 

structures and organic materials in the architecture of the optoelectronic devices and their 

performance metrics.  

Second, the instability of the perovskite (ABX3) as the most promising solution 

processable light-absorbing semiconductors was addressed for the purpose of this 

dissertation[116, 154]. The study was primarily conducted on a dye-sensitized solar cell with 

perovskite as its light absorbing content. A dynamic restoration of the perovskite structure 

seemed to resolve the instability of the unit. The study was then expanded to an all-solid-state 

photodiode and focused on defect engineering of the perovskite to reduce the degradation rate. 

The results of these studies highlighted the determining role of the counter ion (A site), 

methylammonium, in the stability of the perovskite-based electronic components. Therefore, a 
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robust combination of counter ions, formamidinium and cesium, was selected to enhance the 

stability of the perovskite structures. 

Third, the X site of the perovskite was hybridized using different ratios of the halides 

following Vegard’s law. These variations altered the sensitivity of the perovskite to different 

wavelengths across the visible range. The thickness of the light absorbing layer was then 

optimized. The halide ratios and thicknesses were adjusted to result in extraction of 

photogenerated charge carriers in both Beer-Lambert and cavity regions. Consequently, the 

absorption spectra of these perovskite structures were wide with a lower limit (frequency) 

dictated by the ratio of the halides. 

Fourth, a chloride salt called methylene blue was employed in the perovskite structure as 

a macromolecule. Methylene blue formed optically and electrically thick junctions in the light 

absorbing layer. High optical density and long charge carrier transit time were the main 

characteristics of these heterojunctions. These thick heterojunctions only enabled extraction of 

the charge carriers formed in the cavity region as photogenerated charge carriers in the Beer-

Lambert region were most likely recombined before reaching the electron extracting layer. This 

charge collection narrowing strategy placed the second constraint (upper limit) on the absorption 

spectrum. Therefore, the lower and upper limits were set through variation of the halide ratio 

and the utilization of the macromolecule, respectively. Also, there was a trade-off between the 

external quantum efficiency and full width at half maximum of the absorption spectrum of these 

narrowband imagers.  

Fifth, the bottom-absorbing perovskite-based image sensors were transformed to top-

absorbing structures to be vertically integrated with silicon substrates for the state of the art 
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applications. The inverted concept was achieved by deposition of the cathode on a highly doped 

silicon. The electron extracting layer, PCBM, was spin coated on top of the cathode. The 

perovskite layer was then deposited on PCBM layer and sandwiched by a layer of PEDOT:PSS. The 

performance metrics of the final structure based on only perovskite was remarkably improved in 

terms of quantum efficiency and consequently responsivity and specific detectivity compared 

with conventional silicon-based CMOS image sensors. 

5.2.  Conclusions 

An inverted concept of the perovskite-based image sensor was vertically integrated with 

a highly doped silicon substrate. Even in the proof of concept state of this image sensor, the 

hybrid component offered performance metrics comparable with the regular concept, bottom 

absorbing perovskite structure. The photosensitive layer was engineered to confine its 

absorption spectrum to a full width at half maximum of bellow 100nm. This feature eliminates 

the requirements of optical accessories such as color filters in the architecture of the image 

sensors. The specific detectivity of these hybrid imagers is three orders of magnitude greater 

than the image sensors based on silicon. Practically, the vertical integration of the perovskite 

structure with silicon increases the fill factor to above the current fill factor of the CMOS imagers 

which is almost 30%. Theoretically, this fill factor may increase up to 100%. This feature 

eliminates the requirement of the microlens arrays to concentrate the light on the active area of 

each pixel. Also, it may reduce the possibility of the cross talk between the pixels to zero. 

Integration of such inverted concept of the perovskite image sensors with a regular CMOS 

technology would offer better image sensing quality, and reduce the cost associated with the 

manufacturing processes in the current imaging technology.  
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5.3.  Limitation  

Similar to other technology, there may be drawbacks associated with the vertically 

integrated hybrid perovskite-silicon imagers operating on charge collection narrowing 

mechanism. Technically, each hybrid pixel may be engineered to detect 100 nm across the visible 

range with a considerable quantum efficiency. A 2D array of these hybrid pixels might be able to 

cover the entire visible range and produce accurate color images with minimum color constancy. 

However, the solution processable nature of the perovskites may introduce complexity to the 

deposition process as there should be wide pitches between the pixels to avoid material leakage 

from one pixel to another. This requirement increases the dead area on the chip and may reduce 

the fill factor. 

The current encapsulating layers used in perovskite-based image sensors tend to lose 

quality and become blurry over the time. This issue reduces the performance of the device 

considerably and must be fixed. Also, the degradation of the protective layer may expose the 

perovskite structure to ambient and reduce their lifetime.   

5.4.  Recommendations for Future Work 

Solution processing technique offers a wide range of possibilities in the imaging 

technology. However, the deposition method of these structures may be reconsidered to 

enhance the reproducibility of the structures. Evaporation of the precursors have already been 

examined. Yet, this method may not be suitable for mass production of these image sensors. 

Single crystalline perovskite structures have displayed outstanding characteristics such as 

remarkably long diffusion lengths and charge carrier lifetimes. These single crystals are 

ferroelectric structures and may be deposited on regular CMOS technologies through highly 
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controlled application of the electric field or manipulation of their piezoelectric property. This 

approach may steer away from the direction of the optoelectronic technology to an entirely 

perovskite-based operation.  

The incorporation of the macromolecules with the perovskite precursors may be 

examined by applying a different concentration of the macromolecule on the top of the 

perovskite and therefore creating color filters with a monolayer thickness on the imaging system. 

This may be realized using an orthogonal solvent to avoid any possible change in the structure of 

the perovskite. 
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